Emergence of cosmic space with Barrow entropy, in non-equilibrium thermodynamic conditions

被引:2
|
作者
Krishnan, P. Nandhida
Mathew, Titus K. [1 ,2 ,3 ]
机构
[1] Cochin Univ Sci & Technol, Dept Phys, Cochin 682022, Kerala, India
[2] Inter Univ Ctr Kerala Legacy Astron & Math, Trichur, India
[3] CUSAT, Ctr Particle Phys, Kochi, India
来源
关键词
Barrow entropy; Emergence of cosmic space; Non-equilibrium thermodynamics; Entropy maximization; BLACK-HOLES; DARK ENERGY; 1ST LAW; EQUATIONS; DIMENSION; CONSTANT; HORIZONS; GRAVITY;
D O I
10.1016/j.dark.2023.101283
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently, Barrow proposed a modified area-entropy relation S = (A/A0)1+ increment /2, where the exponent increment , ranges 0 < increment < 1, by taking account of the quantum gravitational deformation effects to the black hole's surface. In recent literature, this horizon entropy has been adopted to the cosmological context. Following this, we obtained the law of emergence, which describes the dynamics of the universe, with Barrow entropy in the context of equilibrium thermodynamics (unified first law and Clausius relation). However, when considering Barrow entropy (a non-Bekenstein entropy), an additional entropy generation arises owing to the non-equilibrium thermodynamics. The corresponding field equation bears an effective coupling strength, which connects the geometry with an effective energy- momentum tensor. We derived the law of emergence by using the non-equilibrium description of the thermodynamic principle, which accounts for the addition entropy production term. We compared it with that of the equilibrium description. In addition, we checked the consistency of the modified law in the context of entropy maximization. Interestingly, we found that the non-equilibrium entropy generation rate decreases gradually, and the universe evolves to an equilibrium state of maximum entropy corresponding to the de Sitter epoch.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] ON DEFINITION OF ENTROPY FOR NON-EQUILIBRIUM STATES
    HOFELICH, F
    ZEITSCHRIFT FUR PHYSIK, 1969, 226 (05): : 395 - &
  • [22] Entropy flux in non-equilibrium thermodynamics
    Jou, D
    Lebon, G
    Mongiovi, MS
    Peruzza, RA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 338 (3-4) : 445 - 457
  • [23] Entropy and Non-Equilibrium Statistical Mechanics
    Kovacs, Robert
    Scarfone, Antonio M.
    Abe, Sumiyoshi
    ENTROPY, 2020, 22 (05)
  • [24] ON THE STATISTICAL DETERMINATION OF NON-EQUILIBRIUM ENTROPY
    TERLETSKII, JP
    TANG, N
    DOKLADY AKADEMII NAUK SSSR, 1980, 255 (01): : 83 - 85
  • [25] On the (Boltzmann) entropy of non-equilibrium systems
    Goldstein, S
    Lebowitz, JL
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 193 (1-4) : 53 - 66
  • [26] ENTROPY CONCEPT IN NON-EQUILIBRIUM THERMODYNAMICS
    MEIXNER, J
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1969, S 26 : 212 - &
  • [27] ENTROPY IN NON-EQUILIBRIUM STATISTICAL MECHANICS
    MURAKHVE.YE
    DOKLADY AKADEMII NAUK SSSR, 1969, 184 (01): : 78 - &
  • [28] ON NON-EQUILIBRIUM FLUCTUATIONS OF THERMODYNAMIC PARAMETERS
    ESPANOL, J
    RUBI, JM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1989, 161 (01) : 89 - 100
  • [29] Non-equilibrium ensembles and thermodynamic functions
    Maghari, A
    Haghighi, B
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1999, 37 (09) : 647 - 651
  • [30] Thermodynamic potentials for non-equilibrium systems
    Descalzi, O
    Martinez, S
    Tirapegui, E
    CHAOS SOLITONS & FRACTALS, 2001, 12 (14-15) : 2619 - 2630