Vehicle detection and traffic density estimation using ensemble of deep learning models

被引:7
|
作者
Mittal, Usha [1 ]
Chawla, Priyanka [1 ]
机构
[1] Lovely Profess Univ, Sch Comp Sci & Engn, Phagwara, Punjab, India
关键词
Detection; Traffic density; Ensemble; SSD; Faster R-CNN; Convolutional neural network; Deep learning; CLASSIFICATION;
D O I
10.1007/s11042-022-13659-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic density estimation can be used for controlling traffic light signals to provide effective traffic management. It can be done in two steps: vehicle recognition and counting. Deep learning (DL) technologies are being explored more and more as CNN grows in popularity. In this study, initially, data was collected from various open-source libraries that is FLIR, KITTI, and MB7500. Vehicles in the images are labelled in six different classes. To deal with an imbalanced dataset, data augmentation techniques were applied. Then, a model based on an ensemble of the faster region-based convolutional neural networks (Faster R-CNN) and Single-shot detector (SSD) were trained on finally processed datasets. The results of the proposed model were compared with base estimators of the FLIR dataset (Thermal and RGB images separately), MB7500, and KITTI dataset. Experimental results depict that the highest mAP obtained was 94% by the proposed Ensemble on FLIR thermal dataset which was 34% better than SSD and 6% from the Faster R-CNN model. Overall, the proposed ensemble achieves better and more promising results as compared to base estimators. Experimental results also show that detection with thermal images was better than visible images. In addition, three algorithms were compared for estimated density and the proposed model shows significant potential for traffic density estimation.
引用
收藏
页码:10397 / 10419
页数:23
相关论文
共 50 条
  • [31] Lung cancer detection from thoracic CT scans using an ensemble of deep learning models
    Nandita Gautam
    Abhishek Basu
    Ram Sarkar
    Neural Computing and Applications, 2024, 36 : 2459 - 2477
  • [32] Lung cancer detection from thoracic CT scans using an ensemble of deep learning models
    Gautam, Nandita
    Basu, Abhishek
    Sarkar, Ram
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (05): : 2459 - 2477
  • [33] Application layer classification of Internet traffic using ensemble learning models
    Arfeen, Asad
    Ul Haq, Khizar
    Yasir, Syed Muhammad
    INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT, 2021, 31 (04)
  • [34] A Comparative Study of Ensemble Deep Learning Models for Skin Cancer Detection
    Kolachina, Srinivasa Kranthi Kiran
    Agada, Ruth
    Li, Wenting
    2023 11TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, ICBCB, 2023, : 175 - 181
  • [35] Ensemble of Deep Learning Models for Sleep Apnea Detection: An Experimental Study
    Mukherjee, Debadyuti
    Dhar, Koustav
    Schwenker, Friedhelm
    Sarkar, Ram
    SENSORS, 2021, 21 (16)
  • [36] Citrus pests classification using an ensemble of deep learning models
    Khanramaki, Morteza
    Asli-Ardeh, Ezzatollah Askari
    Kozegar, Ehsan
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 186
  • [37] Combining predictive base models using deep ensemble learning
    Oner, Mahir
    Ustundag, Alp
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (05) : 6657 - 6668
  • [38] Glomerulus Semantic Segmentation Using Ensemble of Deep Learning Models
    Ye Gu
    Ruyun Ruan
    Yan Yan
    Jian Zhao
    Weihua Sheng
    Lixin Liang
    Bingding Huang
    Arabian Journal for Science and Engineering, 2022, 47 : 14013 - 14024
  • [39] Glomerulus Semantic Segmentation Using Ensemble of Deep Learning Models
    Gu, Ye
    Ruan, Ruyun
    Yan, Yan
    Zhao, Jian
    Sheng, Weihua
    Liang, Lixin
    Huang, Bingding
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (11) : 14013 - 14024
  • [40] Classification of electrocardiogram signal using an ensemble of deep learning models
    Pandey, Saroj Kumar
    Janghel, Rekh Ram
    DATA TECHNOLOGIES AND APPLICATIONS, 2021, 55 (03) : 446 - 460