Vehicle detection and traffic density estimation using ensemble of deep learning models

被引:7
|
作者
Mittal, Usha [1 ]
Chawla, Priyanka [1 ]
机构
[1] Lovely Profess Univ, Sch Comp Sci & Engn, Phagwara, Punjab, India
关键词
Detection; Traffic density; Ensemble; SSD; Faster R-CNN; Convolutional neural network; Deep learning; CLASSIFICATION;
D O I
10.1007/s11042-022-13659-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic density estimation can be used for controlling traffic light signals to provide effective traffic management. It can be done in two steps: vehicle recognition and counting. Deep learning (DL) technologies are being explored more and more as CNN grows in popularity. In this study, initially, data was collected from various open-source libraries that is FLIR, KITTI, and MB7500. Vehicles in the images are labelled in six different classes. To deal with an imbalanced dataset, data augmentation techniques were applied. Then, a model based on an ensemble of the faster region-based convolutional neural networks (Faster R-CNN) and Single-shot detector (SSD) were trained on finally processed datasets. The results of the proposed model were compared with base estimators of the FLIR dataset (Thermal and RGB images separately), MB7500, and KITTI dataset. Experimental results depict that the highest mAP obtained was 94% by the proposed Ensemble on FLIR thermal dataset which was 34% better than SSD and 6% from the Faster R-CNN model. Overall, the proposed ensemble achieves better and more promising results as compared to base estimators. Experimental results also show that detection with thermal images was better than visible images. In addition, three algorithms were compared for estimated density and the proposed model shows significant potential for traffic density estimation.
引用
收藏
页码:10397 / 10419
页数:23
相关论文
共 50 条
  • [1] Vehicle detection and traffic density estimation using ensemble of deep learning models
    Usha Mittal
    Priyanka Chawla
    Multimedia Tools and Applications, 2023, 82 : 10397 - 10419
  • [2] Traffic Surveillance: Vehicle Detection and Pose Estimation Based on Deep Learning
    Fadhil, Fajer
    Abdulghani, Mohammed
    Salih, Anmar
    Ghazal, Mohammed
    PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (02): : 131 - 134
  • [3] Apparent Age Estimation Using Ensemble of Deep Learning Models
    Malli, Refik Can
    Aygun, Mehmet
    Ekenel, Hamm Kemal
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 714 - 721
  • [4] Adaptive traffic light control using vision-based deep learning for vehicle density estimation
    Karoon, Weerasak
    Chuasuai, Peeranut
    Thipprasert, Pearploy
    Khongchu, Nachasa
    Kunakornjittirak, Piyaboon
    Siriborvornratanakul, Thitirat
    2024 6TH ASIA PACIFIC INFORMATION TECHNOLOGY CONFERENCE, APIT 2024, 2024, : 37 - 42
  • [5] Detection of land subsidence using hybrid and ensemble deep learning models
    Kariminejad, Narges
    Mohammadifar, Aliakbar
    Sepehr, Adel
    Garajeh, Mohammad Kazemi
    Rezaei, Mahrooz
    Desir, Gloria
    Quesada-Roman, Adolfo
    Gholami, Hamid
    APPLIED GEOMATICS, 2024, 16 (03) : 593 - 610
  • [6] Skin Cancer Detection using Ensemble Learning and Grouping of Deep Models
    Guergueb, Takfarines
    Akhloufi, Moulay A.
    19TH INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING, CBMI 2022, 2022, : 121 - 125
  • [7] Traffic density estimation using vehicle sensor data
    Lee, Heewon
    Lee, Jisun
    Chung, Younshik
    JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 26 (06) : 675 - 689
  • [8] Sarcasm detection using deep learning and ensemble learning
    Priya Goel
    Rachna Jain
    Anand Nayyar
    Shruti Singhal
    Muskan Srivastava
    Multimedia Tools and Applications, 2022, 81 : 43229 - 43252
  • [9] Sarcasm detection using deep learning and ensemble learning
    Goel, Priya
    Jain, Rachna
    Nayyar, Anand
    Singhal, Shruti
    Srivastava, Muskan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (30) : 43229 - 43252
  • [10] Smart City Traffic Management: Acoustic-Based Vehicle Detection Using Stacking-Based Ensemble Deep Learning Approach
    Shabbir, Ahsan
    Cheema, Ammara Nawaz
    Ullah, Inam
    Almanjahie, Ibrahim M.
    Alshahrani, Fatimah
    IEEE ACCESS, 2024, 12 : 35947 - 35956