A generalization of Ito's theorem to skew braces

被引:1
|
作者
Tsang, Cindy [1 ]
机构
[1] Ochanomizu Univ, Dept Math, 2-1-1 Otsuka,Bunkyo Ku, Tokyo, Japan
关键词
Factorization of skew braces; Product of trivial skew braces; Meta-trivial skew brace; Ito's theorem; Left and right ideals; Opposite skew brace;
D O I
10.1016/j.jalgebra.2023.12.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The famous theorem of Ito' in group theory states that if a group G = HK is the product of two abelian subgroups H and K, then G is metabelian. We shall generalize this to the setting of a skew brace (A, center dot, degrees). Our main result says that if A = BC or A = B degrees C is the product of two trivial sub skew braces B and C which are both left and right ideals in the opposite skew brace of A, then A is meta-trivial. One can recover Ito''s theorem by taking A to be an almost trivial skew brace. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:367 / 399
页数:33
相关论文
共 50 条
  • [31] A Generalization of Pohlke's Theorem
    Bergold, Helmut
    ELEMENTE DER MATHEMATIK, 2014, 69 (02) : 57 - 60
  • [32] A generalization of Cobham's theorem
    Durand, F
    THEORY OF COMPUTING SYSTEMS, 1998, 31 (02) : 169 - 185
  • [33] A generalization of Forelli's theorem
    Joo, Jae-Cheon
    Kim, Kang-Tae
    Schmalz, Gerd
    MATHEMATISCHE ANNALEN, 2013, 355 (03) : 1171 - 1176
  • [34] On a generalization of Jentzsch's theorem
    Blatt, Hans-Peter
    Blatt, Simon
    Luh, Wolfgang
    JOURNAL OF APPROXIMATION THEORY, 2009, 159 (01) : 26 - 38
  • [35] On a Generalization of Voronin's Theorem
    Laurincikas, A.
    MATHEMATICAL NOTES, 2020, 107 (3-4) : 442 - 451
  • [36] On a generalization of Fueter's theorem
    Sommen, F
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (04): : 899 - 902
  • [37] Cauchy's theorem and generalization
    Reuss, Paul
    EPJ NUCLEAR SCIENCES & TECHNOLOGIES, 2018, 4
  • [38] A generalization of the Opial's theorem
    Cegielski, Andrzej
    CONTROL AND CYBERNETICS, 2007, 36 (03): : 601 - 610
  • [39] A generalization of Jentzsch’s theorem
    E. A. Lebedeva
    Mathematical Notes, 2010, 88 : 717 - 722
  • [40] A generalization of Obata’s theorem
    Akhil Ranjan
    G. Santhanam
    The Journal of Geometric Analysis, 1997, 7 (3): : 357 - 375