A generalization of Ito's theorem to skew braces

被引:1
|
作者
Tsang, Cindy [1 ]
机构
[1] Ochanomizu Univ, Dept Math, 2-1-1 Otsuka,Bunkyo Ku, Tokyo, Japan
关键词
Factorization of skew braces; Product of trivial skew braces; Meta-trivial skew brace; Ito's theorem; Left and right ideals; Opposite skew brace;
D O I
10.1016/j.jalgebra.2023.12.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The famous theorem of Ito' in group theory states that if a group G = HK is the product of two abelian subgroups H and K, then G is metabelian. We shall generalize this to the setting of a skew brace (A, center dot, degrees). Our main result says that if A = BC or A = B degrees C is the product of two trivial sub skew braces B and C which are both left and right ideals in the opposite skew brace of A, then A is meta-trivial. One can recover Ito''s theorem by taking A to be an almost trivial skew brace. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:367 / 399
页数:33
相关论文
共 50 条
  • [1] Isoclinism of skew braces
    Letourmy, T.
    Vendramin, L.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (06) : 2891 - 2906
  • [2] Factorizations of skew braces
    Jespers, E.
    Kubat, L.
    Van Antwerpen, A.
    Vendramin, L.
    MATHEMATISCHE ANNALEN, 2019, 375 (3-4) : 1649 - 1663
  • [3] On skew braces and their ideals
    Konovalov, Alexander
    Smoktunowicz, Agata
    Vendramin, Leandro
    EXPERIMENTAL MATHEMATICS, 2021, 30 (01) : 95 - 104
  • [4] On λ-homomorphic skew braces
    Bardakov, Valeriy G.
    Neshchadim, Mikhail, V
    Yadav, Manoj K.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (06)
  • [5] Skew-braces and q-braces
    Rump, Wolfgang
    FORUM MATHEMATICUM, 2023, : 1631 - 1653
  • [6] Factorizations of skew braces
    E. Jespers
    Ł. Kubat
    A. Van Antwerpen
    L. Vendramin
    Mathematische Annalen, 2019, 375 : 1649 - 1663
  • [7] Radford's theorem about Hopf braces
    Zhu, Haixing
    Ying, Zhiling
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (04) : 1426 - 1440
  • [8] Bykovskii’s theorem and a generalization of Larcher’s theorem
    D. M. Ushanov
    Mathematical Notes, 2012, 91 : 746 - 750
  • [9] Bykovskii's theorem and a generalization of Larcher's theorem
    Ushanov, D. M.
    MATHEMATICAL NOTES, 2012, 91 (5-6) : 746 - 750
  • [10] Schur covers of skew braces
    Letourmy, T.
    Vendramin, L.
    JOURNAL OF ALGEBRA, 2024, 644 : 609 - 654