A multi-center study of ultrasound images using a fully automated segmentation architecture

被引:6
|
作者
Peng, Tao [1 ,2 ,3 ]
Wang, Caishan [4 ]
Tang, Caiyin [5 ]
Gu, Yidong [6 ]
Zhao, Jing [7 ]
Li, Quan [8 ]
Cai, Jing [2 ]
机构
[1] Soochow Univ, Sch Future Sci & Engn, Suzhou, Peoples R China
[2] Hong Kong Polytech Univ, Dept Hlth Technol & Informat, Hong Kong, Peoples R China
[3] UT Southwestern Med Ctr, Dept Radiat Oncol, Dallas, TX USA
[4] Soochow Univ, Dept Ultrasound, Affiliated Hosp 2, Suzhou, Jiangsu, Peoples R China
[5] Nanjing Med Univ, Taizhou Peoples Hosp, Dept Radiol, Taizhou, Jiangsu, Peoples R China
[6] Nanjing Med Univ, Suzhou Municipal Hosp, Affiliated Suzhou Hosp, Dept Med Ultrasound, Suzhou, Jiangsu, Peoples R China
[7] Tsinghua Univ, Beijing Tsinghua Changgung Hosp, Dept Ultrasound, Beijing, Peoples R China
[8] Soochow Univ, Affiliated Hosp 2, Ctr Stomatol, Suzhou, Peoples R China
关键词
Medical image processing; Segmentation; Polygon searching method; Quantum evolution network; Mathematical mapping formula; DIFFERENTIAL EVOLUTION ALGORITHM; GLOBAL OPTIMIZATION;
D O I
10.1016/j.patcog.2023.109925
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate organ segmentation in ultrasound (US) images remains challenging because such images have inhomogeneous intensity distributions in their regions of interest (ROIs) and speckle and imaging artifacts. We address this problem by developing a coarse-to-refinement architecture for the segmentation of multiple organs (i.e., the prostate and kidney) in US image datasets from multiple centers. Our proposed architecture has the following four advantages: (1) it inherits the ability of the deep learning models to locate an ROI automatically while also using a principal curve approach to automatically fit a dataset center; (2) it takes advantage of a principal curve-based enhanced polygon searching method, which inherits the principal curve's characteristic to automatically approach the center of the dataset; (3) it incorporates quantum characteristics into a storage-based evolution network together to improve the global search performance of our method, which includes several improvements, such as a new quantum mutation module, a cuckoo search method, and global optimum schemes; (4) it incorporates a suitable mathematical model to smooth the contour of ROIs, which is explained by the parameters of a neural network model. Application of our method to US image datasets of multiple organs and from multiple centers demonstrates that it achieves satisfactory segmentation performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images
    Jin, Lei
    Sun, Tianyang
    Liu, Xi
    Cao, Zehong
    Liu, Yan
    Chen, Hong
    Ma, Yixin
    Zhang, Jun
    Zou, Yaping
    Liu, Yingchao
    Shi, Feng
    Shen, Dinggang
    Wu, Jinsong
    ISCIENCE, 2023, 26 (11)
  • [22] A multi-center milestone study of clinical vertebral CT segmentation
    Yao, Jianhua
    Burns, Joseph E.
    Forsberg, Daniel
    Seitel, Alexander
    Rasoulian, Abtin
    Abolmaesumi, Purang
    Hammernik, Kerstin
    Urschler, Martin
    Ibragimov, Bulat
    Korez, Robert
    Vrtovec, Tomaz
    Castro-Mateos, Isaac
    Pozo, Jose M.
    Frangi, Alejandro F.
    Summers, Ronald M.
    Li, Shuo
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2016, 49 : 16 - 28
  • [23] Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study
    de Sitter, Alexandra
    Steenwijk, Martijn D.
    Ruet, Aurelie
    Versteeg, Adriaan
    Liu, Yaou
    van Schijndel, Ronald A.
    Pouwels, Petra J. W.
    Kilsdonk, Iris D.
    Cover, Keith S.
    van Dijk, Bob W.
    Ropele, Stefan
    Rocca, Maria A.
    Yiannakas, Marios
    Wattjes, Mike P.
    Damangir, Soheil
    Frisoni, Giovanni B.
    Sastre-Garriga, Jaume
    Rovira, Alex
    Enzinger, Christian
    Filippi, Massimo
    Frederiksen, Jette
    Ciccarelli, Olga
    Kappos, Ludwig
    Barkhof, Frederik
    Vrenken, Hugo
    NEUROIMAGE, 2017, 163 : 106 - 114
  • [24] W- Net: Two-stage segmentation for multi-center kidney ultrasound
    Chang, Yu-Chi
    Lo, Chung-Ming
    Chen, Yi-Kong
    Wu, Ping-Hsun
    Luh, Hsing
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 1522 - 1523
  • [25] Segmentation of prostate contours for automated diagnosis using ultrasound images: A survey
    Singh, Raman Preet
    Gupta, Savita
    Acharya, U. Rajendra
    JOURNAL OF COMPUTATIONAL SCIENCE, 2017, 21 : 223 - 231
  • [26] Automated Epidermis Segmentation in Ultrasound Skin Images
    Czajkowska, Joanna
    Badura, Pawel
    INNOVATIONS IN BIOMEDICAL ENGINEERING, 2019, 925 : 3 - 11
  • [27] Automated segmentation of breast lesions in ultrasound images
    Liu, Xu
    Huo, Zhimin
    Zhang, Jiwu
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 7433 - 7435
  • [28] A concept for fully automated segmentation of bone in ultrasound imaging
    Ramakrishnan, Ananth Hari
    Rajappa, Muthaiah
    Krithivasan, Kannan
    Chockalingam, Nachiappan
    Chatzistergos, Panagiotis E.
    Amirtharajan, Rengarajan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [29] Automated segmentation of the ciliary muscle in OCT images using fully convolutional networks
    Cabeza-Gil, Iulen
    Ruggeri, Marco
    Chang, Yu-Cherng
    Calvo, Begona
    Manns, Fabrice
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (05) : 2810 - 2823
  • [30] Automatic semantic segmentation of the lumbar spine: Clinical applicability in a multi-parametric and multi-center study on magnetic resonance images
    Saenz-Gamboa, Jhon Jairo
    Domenech, Julio
    Alonso-Manjarres, Antonio
    Gomez, Jon A.
    Iglesia-Vaya, Maria de la
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 140