A multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images

被引:1
|
作者
Jin, Lei [1 ,2 ]
Sun, Tianyang [3 ]
Liu, Xi [1 ,2 ]
Cao, Zehong [3 ]
Liu, Yan [1 ,2 ]
Chen, Hong [2 ,4 ]
Ma, Yixin [1 ,2 ]
Zhang, Jun [5 ]
Zou, Yaping [5 ]
Liu, Yingchao [6 ]
Shi, Feng [3 ]
Shen, Dinggang [3 ,7 ,8 ]
Wu, Jinsong [1 ,2 ]
机构
[1] Fudan Univ, Huashan Hosp, Neurol Surg Dept, Glioma Surg Div, Shanghai 200040, Peoples R China
[2] Fudan Univ, Huashan Hosp, Natl Ctr Neurol Disorders, Shanghai 200040, Peoples R China
[3] Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai 200030, Peoples R China
[4] Fudan Univ, Huashan Hosp, Dept Pathol, Shanghai 200040, Peoples R China
[5] Wuhan Zhongji Biotechnol Co Ltd, Wuhan 430206, Peoples R China
[6] Shandong First Med Univ, Prov Hosp, Dept Neurosurg, Jinan 250021, Shandong, Peoples R China
[7] ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
[8] Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China
关键词
ARTIFICIAL-INTELLIGENCE; DIGITAL PATHOLOGY;
D O I
10.1016/j.isci.2023.108041
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate pathological classification and grading of gliomas is crucial in clinical diagnosis and treatment. The application of deep learning techniques holds promise for automated histological pathology diagnosis. In this study, we collected 733 whole slide images from four medical centers, of which 456 were used for model training, 150 for internal validation, and 127 for multi-center testing. The study includes 5 types of common gliomas. A subtask-guided multi-instance learning image-to-label training pipeline was employed. The pipeline leveraged "patch prompting"for the model to converge with reasonable computational cost. Experiments showed that an overall accuracy of 0.79 in the internal validation dataset. The performance on the multi-center testing dataset showed an overall accuracy to 0.73. The findings suggest a minor yet acceptable performance decrease in multi-center data, demonstrating the model's strong generalizability and establishing a robust foundation for future clinical applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Automated grading of glioma based on density and atypia analysis in whole slide images
    Han J.
    Xie J.
    Gu S.
    Yan C.
    Li J.
    Zhang Z.
    Xu J.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2021, 38 (06): : 1062 - 1071
  • [2] Automated analysis and diagnosis of skin melanoma on whole slide histopathological images
    Lu, Cheng
    Mandal, Mrinal
    PATTERN RECOGNITION, 2015, 48 (08) : 2738 - 2750
  • [3] Automated segmentation of the epidermis area in skin whole slide histopathological images
    Lu, Cheng
    Ma, Zhen
    Mandal, Mrinal
    IET IMAGE PROCESSING, 2015, 9 (09) : 735 - 742
  • [4] Automated Segmentation of Regions of Interest in Whole Slide Skin Histopathological Images
    Xu, Hongming
    Lu, Cheng
    Mandal, Mrinal
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 3869 - 3872
  • [5] MULTI-CLASS SINGLE-LABEL CLASSIFICATION OF HISTOPATHOLOGICAL WHOLE-SLIDE IMAGES
    Bug, Daniel
    Schueler, Julia
    Feuerhake, Friedrich
    Merhof, Dorit
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 1392 - 1396
  • [6] The histopathological diagnosis of atypical meningioma: glass slide versus whole slide imaging for grading assessment
    Ammendola, Serena
    Bariani, Elena
    Eccher, Albino
    Capitanio, Arrigo
    Ghimenton, Claudio
    Pantanowitz, Liron
    Parwani, Anil
    Girolami, Ilaria
    Scarpa, Aldo
    Barresi, Valeria
    VIRCHOWS ARCHIV, 2021, 478 (04) : 747 - 756
  • [7] The histopathological diagnosis of atypical meningioma: glass slide versus whole slide imaging for grading assessment
    Serena Ammendola
    Elena Bariani
    Albino Eccher
    Arrigo Capitanio
    Claudio Ghimenton
    Liron Pantanowitz
    Anil Parwani
    Ilaria Girolami
    Aldo Scarpa
    Valeria Barresi
    Virchows Archiv, 2021, 478 : 747 - 756
  • [8] An Explainable Coarse-to-Fine Survival Analysis Method on Multi-Center Whole Slide Images
    Wang H.
    Jiang D.
    Zhang H.
    Wang Y.
    Yang L.
    Kerr D.J.
    Zhang Y.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 1316 - 1327
  • [9] Domain Adaptive Classification for Compensating Variability in Histopathological Whole Slide Images
    Gadermayr, Michael
    Strauch, Martin
    Klinkhammer, Barbara Mara
    Djudjaj, Sonja
    Boor, Peter
    Merhof, Dorit
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016), 2016, 9730 : 616 - 622
  • [10] Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer
    Swiderska-Chadaj, Zaneta
    de Bel, Thomas
    Blanchet, Lionel
    Baidoshvili, Alexi
    Vossen, Dirk
    van der Laak, Jeroen
    Litjens, Geert
    SCIENTIFIC REPORTS, 2020, 10 (01)