A multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images

被引:1
|
作者
Jin, Lei [1 ,2 ]
Sun, Tianyang [3 ]
Liu, Xi [1 ,2 ]
Cao, Zehong [3 ]
Liu, Yan [1 ,2 ]
Chen, Hong [2 ,4 ]
Ma, Yixin [1 ,2 ]
Zhang, Jun [5 ]
Zou, Yaping [5 ]
Liu, Yingchao [6 ]
Shi, Feng [3 ]
Shen, Dinggang [3 ,7 ,8 ]
Wu, Jinsong [1 ,2 ]
机构
[1] Fudan Univ, Huashan Hosp, Neurol Surg Dept, Glioma Surg Div, Shanghai 200040, Peoples R China
[2] Fudan Univ, Huashan Hosp, Natl Ctr Neurol Disorders, Shanghai 200040, Peoples R China
[3] Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai 200030, Peoples R China
[4] Fudan Univ, Huashan Hosp, Dept Pathol, Shanghai 200040, Peoples R China
[5] Wuhan Zhongji Biotechnol Co Ltd, Wuhan 430206, Peoples R China
[6] Shandong First Med Univ, Prov Hosp, Dept Neurosurg, Jinan 250021, Shandong, Peoples R China
[7] ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
[8] Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China
关键词
ARTIFICIAL-INTELLIGENCE; DIGITAL PATHOLOGY;
D O I
10.1016/j.isci.2023.108041
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate pathological classification and grading of gliomas is crucial in clinical diagnosis and treatment. The application of deep learning techniques holds promise for automated histological pathology diagnosis. In this study, we collected 733 whole slide images from four medical centers, of which 456 were used for model training, 150 for internal validation, and 127 for multi-center testing. The study includes 5 types of common gliomas. A subtask-guided multi-instance learning image-to-label training pipeline was employed. The pipeline leveraged "patch prompting"for the model to converge with reasonable computational cost. Experiments showed that an overall accuracy of 0.79 in the internal validation dataset. The performance on the multi-center testing dataset showed an overall accuracy to 0.73. The findings suggest a minor yet acceptable performance decrease in multi-center data, demonstrating the model's strong generalizability and establishing a robust foundation for future clinical applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Classification of molecular subtypes of breast cancer in whole-slide histopathological images using a novel deep learning algorithm
    Kim, H. S.
    Min, K-W.
    Kim, J. S.
    ANNALS OF ONCOLOGY, 2023, 34 : S1472 - S1472
  • [22] Automated Lung and Colon Cancer Classification Using Histopathological Images
    Ji, Jie
    Li, Jirui
    Zhang, Weifeng
    Geng, Yiqun
    Dong, Yuejiao
    Huang, Jiexiong
    Hong, Liangli
    BIOMEDICAL ENGINEERING AND COMPUTATIONAL BIOLOGY, 2024, 15
  • [23] Glomerular Segmentation and Classification Pipeline Using NEPTUNE Whole Slide Images
    Ambekar, Akhil
    Wang, Bangchen
    Cassol, Clarissa
    Zee, Jarcy
    Li, Xiang
    Chen, Yijiang
    Rangavajla, Ananya
    Kapur, Brinda
    Holzman, Lawrence
    Hodgin, Jeffrey
    Mariani, Laura
    Madabhushi, Anant
    Lafata, Kyle
    Barisoni, Laura
    Janowczyk, Andrew
    LABORATORY INVESTIGATION, 2022, 102 (SUPPL 1) : 1170 - 1172
  • [24] Classification of Thyroid Carcinoma in Whole Slide Images Using Cascaded CNN
    El-Hossiny, Ahmed S.
    Al-Atabany, Walid
    Hassan, Osama
    Soliman, Ahmed M.
    Sami, Sherif A.
    IEEE ACCESS, 2021, 9 : 88429 - 88438
  • [25] Histopathological Classification of Canine Cutaneous Round Cell Tumors Using Deep Learning: A Multi-Center Study
    Salvi, Massimo
    Molinari, Filippo
    Iussich, Selina
    Muscatello, Luisa Vera
    Pazzini, Luca
    Benali, Silvia
    Banco, Barbara
    Abramo, Francesca
    De Maria, Raffaella
    Aresu, Luca
    FRONTIERS IN VETERINARY SCIENCE, 2021, 8
  • [26] Glomerular Segmentation and Classification Pipeline Using NEPTUNE Whole Slide Images
    Ambekar, Akhil
    Wang, Bangchen
    Cassol, Clarissa
    Zee, Jarcy
    Li, Xiang
    Chen, Yijiang
    Rangavajla, Ananya
    Kapur, Brinda
    Holzman, Lawrence
    Hodgin, Jeffrey
    Mariani, Laura
    Madabhushi, Anant
    Lafata, Kyle
    Barisoni, Laura
    Janowczyk, Andrew
    MODERN PATHOLOGY, 2022, 35 (SUPPL 2) : 1170 - 1172
  • [27] Detecting sebaceous carcinoma in whole-histopathological slide images using deep learning
    Funatsu, Naohiko
    Akiyama, Masato
    Tanabe, Mika
    Yoshikawa, Hiroshi
    Sonoda, Koh-Hei
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [28] Multi-Stage Classification-Based Deep Learning for Gleason System Grading Using Histopathological Images
    Hammouda, Kamal
    Khalifa, Fahmi
    Alghamdi, Norah Saleh
    Darwish, Hanan
    El-Baz, Ayman
    CANCERS, 2022, 14 (23)
  • [29] Deep Multi-Dictionary Learning for Survival Prediction With Multi-Zoom Histopathological Whole Slide Images
    Tu, Chao
    Du, Denghui
    Zeng, Tieyong
    Zhang, Yu
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (01) : 14 - 25
  • [30] Classification of histopathological whole slide images based on multiple weighted semi-supervised domain adaptation
    Wang, Pin
    Li, Pufei
    Li, Yongming
    Xu, Jin
    Jiang, Mingfeng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 73