Gradient estimate for eigenfunctions of the operator L on self-shrinkers

被引:0
|
作者
Zeng, Fan-Qi [1 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
来源
SCIENCEASIA | 2023年 / 49卷 / 04期
关键词
eigenfunction; self-shrinker; & INFIN; -Bakry-emery Ricci tensor; gradient estimate; Harnack inequality; LAPLACIAN; THEOREM;
D O I
10.2306/scienceasia1513-1874.2023.011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study gradient estimates for eigenfunctions associated to the operator i on self-shrinkers. As applications, we obtain a Harnack type inequality concerning those eigenfunctions. Besides, we obtain a gradient estimate of the higher eigenfunctions of the operator i on self-shrinkers.
引用
收藏
页码:560 / 567
页数:8
相关论文
共 50 条
  • [31] Rigidity and curvature estimates for graphical self-shrinkers
    Guang, Qiang
    Zhu, Jonathan J.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (06)
  • [32] Lojasiewicz Inequalities for Mean Convex Self-Shrinkers
    Zhu, Jonathan J.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (02) : 1236 - 1254
  • [33] Complete self-shrinkers of the mean curvature flow
    Qing-Ming Cheng
    Yejuan Peng
    Calculus of Variations and Partial Differential Equations, 2015, 52 : 497 - 506
  • [34] Rigidity and curvature estimates for graphical self-shrinkers
    Qiang Guang
    Jonathan J. Zhu
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [35] VOLUME GROWTH, EIGENVALUE AND COMPACTNESS FOR SELF-SHRINKERS
    Ding, Qi
    Xin, Y. L.
    ASIAN JOURNAL OF MATHEMATICS, 2013, 17 (03) : 443 - 456
  • [36] Pinching Theorems for Self-Shrinkers of Higher Codimension
    Cao, Shunjuan
    Xu, Hongwei
    Zhao, Entao
    RESULTS IN MATHEMATICS, 2024, 79 (08)
  • [37] The Rigidity Theorem for Complete Lagrangian Self-Shrinkers
    Li, Zhi
    Wang, Ruixin
    Wei, Guoxin
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (02)
  • [38] ON THE ENTROPY OF CLOSED HYPERSURFACES AND SINGULAR SELF-SHRINKERS
    Zhu, Jonathan J.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 114 (03) : 551 - 593
  • [39] Hopf-type theorem for self-shrinkers
    Alencar, Hilario
    Silva Neto, Gregorio
    Zhou, Detang
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (782): : 247 - 279
  • [40] Closed Embedded Self-shrinkers of Mean Curvature Flow
    Riedler, Oskar
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (06)