Gradient estimate for eigenfunctions of the operator L on self-shrinkers

被引:0
|
作者
Zeng, Fan-Qi [1 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
来源
SCIENCEASIA | 2023年 / 49卷 / 04期
关键词
eigenfunction; self-shrinker; & INFIN; -Bakry-emery Ricci tensor; gradient estimate; Harnack inequality; LAPLACIAN; THEOREM;
D O I
10.2306/scienceasia1513-1874.2023.011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study gradient estimates for eigenfunctions associated to the operator i on self-shrinkers. As applications, we obtain a Harnack type inequality concerning those eigenfunctions. Besides, we obtain a gradient estimate of the higher eigenfunctions of the operator i on self-shrinkers.
引用
收藏
页码:560 / 567
页数:8
相关论文
共 50 条
  • [21] The rigidity theorems for Lagrangian self-shrinkers
    Ding, Qi
    Xin, Yuanlong
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 692 : 109 - 123
  • [22] A note on the characterization of spheres as self-shrinkers
    Wagner O. Costa-Filho
    Archiv der Mathematik, 2020, 115 : 737 - 739
  • [23] Halfspace type theorems for self-shrinkers
    Cavalcante, Marcos P.
    Espinar, Jose M.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 : 242 - 250
  • [24] A note on rigidity of spacelike self-shrinkers
    Luo, Yong
    Qiu, Hongbing
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (05)
  • [25] Entropy Bounds for Self-Shrinkers with Symmetries
    Ma, John Man Shun
    Muhammad, Ali
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (02)
  • [26] An unknottedness result for noncompact self-shrinkers
    Mramor, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (810): : 189 - 215
  • [27] SELF-SHRINKERS OF THE MEAN CURVATURE FLOW
    Cheng, Qing-Ming
    Peng, Yejuan
    DIFFERENTIAL GEOMETRY OF SUBMANIFOLDS AND ITS RELATED TOPICS, 2014, : 147 - 163
  • [28] Rotational Self-Shrinkers in Euclidean Spaces
    Arslan, Kadri
    Aydin, Yilmaz
    Sokur, Betuel Bulca
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (01): : 34 - 43
  • [29] A Survey of Closed Self-Shrinkers with Symmetry
    Drugan, Gregory
    Lee, Hojoo
    Xuan Hien Nguyen
    RESULTS IN MATHEMATICS, 2018, 73 (01)
  • [30] Complete self-shrinkers of the mean curvature flow
    Cheng, Qing-Ming
    Peng, Yejuan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (3-4) : 497 - 506