An optimized hybrid deep learning model for PM2.5 and O3 concentration prediction

被引:7
|
作者
Hu, Juntao [1 ,2 ]
Chen, Yiyuan [1 ,2 ,3 ]
Wang, Wei [1 ,2 ,3 ]
Zhang, Shicheng [1 ,2 ,3 ]
Cui, Can [1 ,2 ,3 ]
Ding, Wenke [1 ,2 ,3 ]
Fang, Yong [1 ,2 ]
机构
[1] Hefei Univ Technol, Acad Optoelect Technol, Natl Engn Lab Special Display Technol, State Key Lab Adv Display Technol, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Intelligent Mfg Inst, Hefei 230051, Peoples R China
[3] Hefei Univ Technol, Sch Instrument Sci & Optoelect Engn, Hefei 230009, Peoples R China
来源
AIR QUALITY ATMOSPHERE AND HEALTH | 2023年 / 16卷 / 04期
关键词
Air pollution forecasting; Convolutional neural network; Long-term and short-term memory; Gated recurrent unit; PARTICULATE MATTER; AIR-POLLUTION; URBAN; SENSITIVITY; SYSTEM;
D O I
10.1007/s11869-023-01317-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As people focus more on environmental protection, air quality prediction plays an increasingly important role in reducing pollution hazards. Both fine particulate matter (PM2.5) and ozone (O-3) pollutants can cause serious damage to human health and property, so it is necessary to accurately predict the concentration of these pollutants. In this study, a hybrid deep air quality prediction model consisting of a one-dimensional convolutional neural network (CNN), bidirectional long-term and short-term memory (BiLSTM), and a gated recurrent unit (GRU) is proposed to predict air quality pollutant concentrations. This model overcomes the limitations of a single model while taking advantages of its benefits. The BiLSTM neural network has more parameters and poor convergence performance, and the GRU has a poor ability to capture long-distance dependencies between features. Compared with the other three deep learning models, the CNN-BiLSTM-GRU model achieves better prediction results. The model proposed in this paper with both meteorological factors and pollutant factors shows the best prediction results with an R-2 of 0.956 and RMSE of 17.2 mu g/m(3) for PM2.5 and an R-2 of 0.958 and RMSE of 13.43 mu g/m(3) for O-3. The original data set from the Aotizhongxin Observator of Beijing with 35,064 samples is selected as the experimental data. The experimental results show that the CNN-BiLSTM-GRU model proposed in this paper achieves the best prediction results. The results show that the proposed model can predict PM2.5 and O-3 more accurately and more robustly, which indicates that it is a promising method for air and particulate pollutants' performance prediction.
引用
收藏
页码:857 / 871
页数:15
相关论文
共 50 条
  • [31] Forecasting hourly PM2.5 concentration with an optimized LSTM model
    Tran, Huynh Duy
    Huang, Hsiang-Yu
    Yu, Jhih-Yuan
    Wang, Sheng-Hsiang
    ATMOSPHERIC ENVIRONMENT, 2023, 315
  • [32] A Deep Learning PM2.5 Hybrid Prediction Model Based on Clustering-Secondary Decomposition Strategy
    Zeng, Tao
    Liu, Ruru
    Liu, Yahui
    Shi, Jinli
    Luo, Tao
    Xi, Yunyun
    Zhao, Shuo
    Chen, Chunpeng
    Pan, Guangrui
    Zhou, Yuming
    Xu, Liping
    ELECTRONICS, 2024, 13 (21)
  • [33] A novel hybrid strategy for PM2.5 concentration analysis and prediction
    Jiang, Ping
    Dong, Qingli
    Li, Peizhi
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2017, 196 : 443 - 457
  • [34] PM2.5 Prediction Based on the CEEMDAN Algorithm and a Machine Learning Hybrid Model
    Ban, Wenchao
    Shen, Liangduo
    SUSTAINABILITY, 2022, 14 (23)
  • [35] A deep learning-based PM2.5 concentration estimator
    Sun, Kezheng
    Tang, Lijuan
    Qian, JianSheng
    Wang, Guangcheng
    Lou, Cairong
    DISPLAYS, 2021, 69
  • [36] A Short-Term Prediction Model of PM2.5 Concentration Based on Deep Learning and Mode Decomposition Methods
    Wei, Jun
    Yang, Fan
    Ren, Xiao-Chen
    Zou, Silin
    APPLIED SCIENCES-BASEL, 2021, 11 (15):
  • [37] Improvement of PM2.5 and O3 forecasting by integration of 3D numerical simulation with deep learning techniques
    Sun, Haochen
    Fung, Jimmy C. H.
    Chen, Yiang
    Chen, Wanying
    Li, Zhenning
    Huang, Yeqi
    Lin, Changqing
    Hu, Mingyun
    Lu, Xingcheng
    SUSTAINABLE CITIES AND SOCIETY, 2021, 75
  • [38] The application of deep learning method in Shanghai PM2.5 prediction
    深度学习方法在上海市PM2.5浓度预报中的应用
    Cao, Yu (liushuicaoyu@163.com), 1600, Chinese Society for Environmental Sciences (40): : 530 - 538
  • [39] PM2.5 concentration prediction using deep learning in internet of things air monitoring system
    Bai, Wei
    Li, Fengying
    ENVIRONMENTAL ENGINEERING RESEARCH, 2023, 28 (01)
  • [40] Prediction of PM2.5 Concentration Based on Deep Learning for High-Dimensional Time Series
    Hu, Jie
    Jia, Yuan
    Jia, Zhen-Hong
    He, Cong-Bing
    Shi, Fei
    Huang, Xiao-Hui
    APPLIED SCIENCES-BASEL, 2024, 14 (19):