Digital twin-driven intelligent assessment of gear surface degradation

被引:191
|
作者
Feng, Ke [1 ,2 ]
Ji, J. C. [3 ]
Zhang, Yongchao [1 ,4 ]
Ni, Qing [3 ]
Liu, Zheng [1 ]
Beer, Michael [5 ,6 ,7 ,8 ]
机构
[1] Univ British Columbia, Sch Engn, Kelowna, BC V1V 1V7, Canada
[2] Univ New South Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
[3] Univ Technol Sydney, Sch Mech & Mechatron Engn, Sydney, NSW 2007, Australia
[4] Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China
[5] Leibniz Univ Hannover, Inst Risk & Reliabil, Hannover, Germany
[6] Univ Liverpool, Inst Risk & Uncertainty, Liverpool, England
[7] Tongji Univ, Int Joint Res Ctr Resilient Infrastruct, Shanghai, Peoples R China
[8] Tongji Univ, Int Joint Res Ctr Engn Reliabil & Stochast, Shanghai, Peoples R China
关键词
Gearbox; Digital twin; Surface degradation; Health management; Wear assessment; GRASSHOPPER OPTIMIZATION ALGORITHM; WEAR PREDICTION; VIBRATION; FATIGUE; TEETH;
D O I
10.1016/j.ymssp.2022.109896
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Gearbox has a compact structure, a stable transmission capability, and a high transmission efficiency. Thus, it is widely applied as a power transmission system in various applications, such as wind turbines, industrial machinery, aircraft, space vehicles, and land vehicles. The gearbox usually operates in harsh and non-stationary working environments, expediting the degradation process of the gear surface. The degradation process may lead to severe gear failures, such as tooth breakage and root crack, which could damage the gear transmission system. Therefore, it is essential to assess the progression of gear surface degradation in order to ensure a reliable operation. The digital twin is an emerging technology for machine health management. A highfidelity digital twin model can help reflect the operation status of the gearbox and reveal the corresponding degradation mechanism, which could benefit the remaining useful life (RUL) prediction and the predictive maintenance-based decision-making framework. This paper develops a digital twin-driven intelligent health management method to monitor and assess the gear surface degradation progression. The developed method can effectively reveal the gear wear propagation characteristics and predict the RUL accurately. Furthermore, the knowledge learned from digital twin models can be well transferred to the surface wear assessment of the physical gearbox in wide industrial applications, which is of great practical significance. Two endurance tests with different dominant degradation mechanisms were conducted to validate the effectiveness of the proposed methodology for gear wear assessment.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Digital twin-driven online intelligent assessment of wind turbine gearbox
    Zhou, Yadong
    Zhou, Jianxing
    Cui, Quanwei
    Wen, Jianmin
    Fei, Xiang
    WIND ENERGY, 2024, 27 (08) : 797 - 815
  • [2] Digital Twin-Driven Remaining Useful Life Prediction for Gear Performance Degradation: A Review
    He, Bin
    Liu, Long
    Zhang, Dong
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2021, 21 (03)
  • [3] Digital twin-driven intelligent construction: Features and trends
    Zhang H.
    Zhou Y.
    Zhu H.
    Sumarac D.
    Cao M.
    SDHM Structural Durability and Health Monitoring, 2021, 15 (03): : 183 - 206
  • [4] Digital twin-driven CNC spindle performance assessment
    Ruijuan Xue
    Xiang Zhou
    Zuguang Huang
    Fengli Zhang
    Fei Tao
    Jinjiang Wang
    The International Journal of Advanced Manufacturing Technology, 2022, 119 : 1821 - 1833
  • [5] Digital twin-driven CNC spindle performance assessment
    Xue, Ruijuan
    Zhou, Xiang
    Huang, Zuguang
    Zhang, Fengli
    Tao, Fei
    Wang, Jinjiang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 119 (3-4): : 1821 - 1833
  • [6] Digital twin-driven intelligent assembly method for high precision products
    Sun X.
    Liu S.
    Shen X.
    Huang D.
    Bao J.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (06): : 1704 - 1716
  • [7] Digital twin-driven aero-engine intelligent predictive maintenance
    Xiong, Minglan
    Wang, Huawei
    Fu, Qiang
    Xu, Yi
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 114 (11-12): : 3751 - 3761
  • [8] Digital Twin-Driven Fault Diagnosis for Autonomous Surface Vehicles
    Bhagavathi, Ravitej
    Kufoalor, D. Kwame Minde
    Hasan, Agus
    IEEE ACCESS, 2023, 11 : 41096 - 41104
  • [9] Digital Twin-Driven Intelligent Task Offloading for Collaborative Mobile Edge Computing
    Zhang, Yongchao
    Hu, Jia
    Min, Geyong
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (10) : 3034 - 3045
  • [10] Digital twin-driven intelligent production line for automotive MEMS pressure sensors
    Zhang, Quanyong
    Shen, Shengnan
    Li, Hui
    Cao, Wan
    Tang, Wen
    Jiang, Jing
    Deng, Mingxing
    Zhang, Yunfan
    Gu, Beikang
    Wu, Kangkang
    Zhang, Kun
    Liu, Sheng
    ADVANCED ENGINEERING INFORMATICS, 2022, 54