Gigahertz Acoustic Delay Lines in Lithium Niobate on Silicon Carbide With Propagation-Q of 11174

被引:10
|
作者
Zheng, Pengcheng [1 ,2 ]
Zhang, Shibin [1 ]
Chen, Yang [1 ,2 ]
Zhang, Liping [1 ,2 ]
Wu, Jinbo [1 ,2 ]
Yao, Hulin [1 ,2 ]
Fang, Xiaoli [1 ,2 ]
Zhao, Xiaomeng [1 ]
Huang, Kai [1 ]
Ou, Xin [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
关键词
Acoustic delay lines; RF signal processing; lithium niobate thin film; silicon carbide; shear horizontal surface acoustic wave (SH-SAW); propagation-Q; FILTERS; WAVES;
D O I
10.1109/LED.2022.3233079
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work demonstrates gigahertz wideband acoustic delay lines (ADLs) with record-breaking propagation-Q using a thin-film X-cut lithium niobate on silicon carbide (LiNbO3-on-SiC) platform. Benefiting from the high bulkwave velocity and excellentmechanical fxQof SiC, the shear horizontal surface acoustic wave (SH-SAW) excited by unidirectional transducers propagates in the top-surface of LiNbO3-on-SiC with low acoustic loss. The zero power flowangle (PFA) of-3 degrees to+Y axis is obtained through simulation analysis and experiment validation, which leads to acoustic wave transmission perpendicular to the electrodes. Oriented at zero PFA, the fabricated ADLs show scalable center frequencies from1.19GHz to 2.11GHz, 3-dB fractional bandwidth ranging from 2.7% to 11.5%, and a record-high propagation-Q of 11174. The performance has shown the great potential of the LiNbO3-on-SiC acoustic platform for various signal processing applications.
引用
收藏
页码:309 / 312
页数:4
相关论文
共 50 条
  • [41] Interface Acoustic Wave Devices Made By Indirect Bonding of Lithium Niobate on Silicon
    Majjad, H.
    Gachon, D.
    Laude, V.
    Ballandras, S.
    2006 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-5, PROCEEDINGS, 2006, : 1193 - 1196
  • [42] 8.5 GHZ AND 11.5 GHZ ACOUSTIC DELAY LINES USING HIGHER-ORDER LAMB MODES IN LITHIUM NIOBATE THIN FILM
    Lu, Ruochen
    Yang, Yansong
    Breen, Michael
    Li, Ming-Huang
    Gong, Songbin
    2020 33RD IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2020), 2020, : 1242 - 1245
  • [43] Surface Acoustic Wave Propagation in Lanthanum Strontium Manganese Oxide - Lithium Niobate Structures
    Kazdailis, Paulius
    Giriuniene, Ramute
    Rimeika, Romualdas
    Ciplys, Daumantas
    Sliuziene, Kristina
    Lisauskas, Vaclovas
    Vengalis, Bonifacas
    Shur, Michael S.
    ACTA ACUSTICA UNITED WITH ACUSTICA, 2013, 99 (03) : 493 - 497
  • [44] PROPAGATION OF SURFACE ACOUSTIC-WAVES IN ION-IMPLANTED LITHIUM-NIOBATE
    BASIN, VM
    PETROV, AV
    PRANYAVICHENE, GB
    EIDUKAS, DY
    SOVIET PHYSICS ACOUSTICS-USSR, 1984, 30 (02): : 160 - 161
  • [45] Reflective Grating Array Based Delay Lines in Thin Film Lithium Niobate on Insulator
    Ghosh, Siddhartha
    Yegnanarayanan, Siva
    Ricci, Matthew
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [46] Delay Lines Based on a Suspended Thin Film of X-Cut Lithium Niobate
    Vidal-Alvarez, Gabriel
    Kochhar, Abhay
    Piazza, Gianluca
    2017 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2017,
  • [47] Hybrid 3C-silicon carbide-lithium niobate integrated photonic platform
    Krishna, Rakesh
    Fan, Tianren
    Hosseinnia, Amir H.
    Wu, Xi
    Peng, Zhongdi
    Adibi, Ali
    OPTICS EXPRESS, 2024, 32 (08) : 14555 - 14564
  • [48] Study of the Impact of Non-linear Piezoelectric Constants on the Acoustic Wave Propagation on Lithium Niobate
    Soumali, C.
    Benatia, D.
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2016, 8 (02)
  • [49] Surface-Acoustic-Wave Devices Based on Lithium Niobate and Amorphous Silicon Thin Films on a Silicon Substrate
    Yang, Yansong
    Gao, Liuqing
    Gong, Songbin
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (11) : 5185 - 5194
  • [50] Q-enhanced Lithium Niobate SH0 Resonators with Optimized Acoustic Boundaries
    Chen, Chao-Yu
    Li, Sheng-Shian
    Li, Ming-Huang
    Gao, Anming
    Lu, Ruochen
    Gong, Songbin
    PROCEEDINGS OF THE 2019 JOINT CONFERENCE OF THE IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM AND EUROPEAN FREQUENCY AND TIME FORUM (EFTF-IFCS 2019), 2019,