Gigahertz Acoustic Delay Lines in Lithium Niobate on Silicon Carbide With Propagation-Q of 11174

被引:10
|
作者
Zheng, Pengcheng [1 ,2 ]
Zhang, Shibin [1 ]
Chen, Yang [1 ,2 ]
Zhang, Liping [1 ,2 ]
Wu, Jinbo [1 ,2 ]
Yao, Hulin [1 ,2 ]
Fang, Xiaoli [1 ,2 ]
Zhao, Xiaomeng [1 ]
Huang, Kai [1 ]
Ou, Xin [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
关键词
Acoustic delay lines; RF signal processing; lithium niobate thin film; silicon carbide; shear horizontal surface acoustic wave (SH-SAW); propagation-Q; FILTERS; WAVES;
D O I
10.1109/LED.2022.3233079
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work demonstrates gigahertz wideband acoustic delay lines (ADLs) with record-breaking propagation-Q using a thin-film X-cut lithium niobate on silicon carbide (LiNbO3-on-SiC) platform. Benefiting from the high bulkwave velocity and excellentmechanical fxQof SiC, the shear horizontal surface acoustic wave (SH-SAW) excited by unidirectional transducers propagates in the top-surface of LiNbO3-on-SiC with low acoustic loss. The zero power flowangle (PFA) of-3 degrees to+Y axis is obtained through simulation analysis and experiment validation, which leads to acoustic wave transmission perpendicular to the electrodes. Oriented at zero PFA, the fabricated ADLs show scalable center frequencies from1.19GHz to 2.11GHz, 3-dB fractional bandwidth ranging from 2.7% to 11.5%, and a record-high propagation-Q of 11174. The performance has shown the great potential of the LiNbO3-on-SiC acoustic platform for various signal processing applications.
引用
收藏
页码:309 / 312
页数:4
相关论文
共 50 条
  • [31] Micromachined silicon acoustic delay lines for ultrasound applications
    Chang, Cheng-Chung
    Cho, Young
    Wang, Lihong
    Zou, Jun
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2013, 23 (02)
  • [32] Acoustic wave amplification with thin film silicon bonded on lithium niobate
    Ghosh, Siddhartha
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2022, 32 (11)
  • [33] Excitation of acoustic waves at the interface between lithium niobate and silicon plates
    Gachon, Dorian
    Majad, Hicham
    Daniau, William
    Laude, Vincent
    Ballandras, Sylvain
    PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM-JOINTLY WITH THE 21ST EUROPEAN FREQUENCY AND TIME FORUM, VOLS 1-4, 2007, : 733 - 736
  • [34] High-Q Lithium Niobate Microring-Resonators on Silicon
    Rabiei, Payam
    Ma, Jichi
    Chiles, Jeff
    Khan, Saeed
    Fathpour, Sasan
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [35] Features of surface acoustic wave propagation in lithium niobate damaged by an electron beam
    R. G. Kryshtal
    A. V. Medved
    Technical Physics, 2003, 48 : 1024 - 1027
  • [36] Features of surface acoustic wave propagation in lithium niobate damaged by an electron beam
    Kryshtal, RG
    Medved, AV
    TECHNICAL PHYSICS, 2003, 48 (08) : 1024 - 1027
  • [37] Low-Loss and High Power Handling Acoustic Delay Lines Using Thin-Film Lithium Niobate on Sapphire
    Lu, Ruochen
    Yang, Yansong
    Hassanien, Ahmed E.
    Gong, Songbin
    2021 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2021, : 270 - 273
  • [38] A Photoacoustic Sensing Probe Based on Silicon Acoustic Delay Lines
    Ustun, Arif Kivanc
    Zou, Jun
    IEEE SENSORS JOURNAL, 2021, 21 (19) : 21371 - 21377
  • [39] Hybrid integrated thin-film lithium niobate and a silicon carbide microcomb amplifier
    Zhou, Yuan
    Cai, Jiachen
    Yang, Bingcheng
    Zhou, Liping
    Wang, Chengli
    Yi, Ailun
    Wang, Zhe
    Liu, Jian
    Yu, Jianping
    Zhang, Jiaxiang
    Fang, Zhiwei
    Ou, Xin
    Cheng, Ya
    OPTICS LETTERS, 2025, 50 (01) : 145 - 148
  • [40] Spontaneous parametric down conversion without poling for silicon carbide and lithium niobate photonics
    Tim F. Weiss
    Hamed Arianfard
    Yang Yang
    Alberto Peruzzo
    Scientific Reports, 15 (1)