The effect of wave frequency drift on the electron nonlinear resonant interaction with whistler-mode waves

被引:8
|
作者
Artemyev, Anton V. V. [1 ]
Albert, Jay M. M. [2 ]
Neishtadt, Anatoli I. I. [3 ]
Mourenas, Didier [4 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Earth Space & Planetary Sci, Los Angeles, CA 90095 USA
[2] Air Force Res Lab, Albuquerque, NM 87123 USA
[3] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, England
[4] CEA, DAM, DIF, F-91297 Arpajon, France
[5] Paris Saclay Univ, Lab Matiere Condit Extremes, CEA, F-91680 Bruyeresle Chatel, France
关键词
PITCH ANGLE SCATTERING; COHERENT VLF WAVES; MAGNETIC-FIELD; ENERGETIC ELECTRONS; PARTICLE INTERACTIONS; ADIABATIC-INVARIANT; CHORUS GENERATION; CYCLOTRON MASER; LION ROARS; ACCELERATION;
D O I
10.1063/5.0131297
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Electron resonant interaction with electromagnetic whistler-mode waves plays a crucial role for electron flux dynamics in planetary magnetospheres. One of the most intense types of whistler-mode waves consists of chorus waves generated via nonlinear resonant interaction with hot anisotropic electrons and propagating with time-varying (drifting) wave frequency. Electron nonlinear resonant interactions with such waves in a dipole magnetic field are well described analytically within the Hamiltonian approach under the approximation of monochromatic waves (of constant frequency). This paper aims to generalize this description to waves with drifting frequency. We show how frequency drift modifies two main nonlinear resonant effects: phase trapping and phase bunching. The obtained results contribute to the development of the Hamiltonian approach for wave-particle resonant interactions.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Mapping for nonlinear electron interaction with whistler-mode waves
    Artemyev, A. V.
    Neishtadt, A. I.
    Vasiliev, A. A.
    PHYSICS OF PLASMAS, 2020, 27 (04)
  • [2] Transitional regime of electron resonant interaction with whistler-mode waves in inhomogeneous space plasma
    Artemyev, A., V
    Neishtadt, A., I
    Vasiliev, A. A.
    Mourenas, D.
    PHYSICAL REVIEW E, 2021, 104 (05)
  • [3] Theoretical model of the nonlinear resonant interaction of whistler-mode waves and field-aligned electrons
    Artemyev, A., V
    Neishtadt, A., I
    Albert, J. M.
    Gan, L.
    Li, W.
    Ma, Q.
    PHYSICS OF PLASMAS, 2021, 28 (05)
  • [4] Evidence of Electron Acceleration via Nonlinear Resonant Interactions with Whistler-mode Waves at Foreshock Transients
    Shi, Xiaofei
    Artemyev, Anton
    Angelopoulos, Vassilis
    Liu, Terry
    Zhang, Xiao-Jia
    ASTROPHYSICAL JOURNAL, 2023, 952 (01):
  • [5] Electron acceleration in the magnetosphere by whistler-mode waves of varying frequency
    A. G. Demekhov
    V. Yu. Trakhtengerts
    M. J. Rycroft
    D. Nunn
    Geomagnetism and Aeronomy, 2006, 46 : 711 - 716
  • [6] Electron acceleration in the magnetosphere by whistler-mode waves of varying frequency
    Demekhov, A. G.
    Trakhtengerts, V. Yu.
    Rycroft, M. J.
    Nunn, D.
    GEOMAGNETISM AND AERONOMY, 2006, 46 (06) : 711 - 716
  • [7] On the resonant interaction of relativistic electrons with oblique whistler-mode waves.
    Kuzichev, I. V.
    Shklyar, D. R.
    2017 XXXIIND GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM OF THE INTERNATIONAL UNION OF RADIO SCIENCE (URSI GASS), 2017,
  • [8] Intense Whistler-mode Waves at Foreshock Transients: Characteristics and Regimes of Wave-Particle Resonant Interaction
    Shi, Xiaofei
    Liu, Terry
    Artemyev, Anton
    Angelopoulos, Vassilis
    Zhang, Xiao-Jia
    Turner, Drew L.
    ASTROPHYSICAL JOURNAL, 2023, 944 (02):
  • [9] Electron acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode chorus waves
    Woodfield, E. E.
    Horne, R. B.
    Glauert, S. A.
    Menietti, J. D.
    Shprits, Y. Y.
    ANNALES GEOPHYSICAE, 2013, 31 (10) : 1619 - 1630
  • [10] Relativistic Electron Precipitation Driven by Nonlinear Resonance With Whistler-Mode Waves
    Tsai, Ethan
    Artemyev, Anton
    Zhang, Xiao-Jia
    Angelopoulos, Vassilis
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2022, 127 (05)