The effect of wave frequency drift on the electron nonlinear resonant interaction with whistler-mode waves

被引:8
|
作者
Artemyev, Anton V. V. [1 ]
Albert, Jay M. M. [2 ]
Neishtadt, Anatoli I. I. [3 ]
Mourenas, Didier [4 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Earth Space & Planetary Sci, Los Angeles, CA 90095 USA
[2] Air Force Res Lab, Albuquerque, NM 87123 USA
[3] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, England
[4] CEA, DAM, DIF, F-91297 Arpajon, France
[5] Paris Saclay Univ, Lab Matiere Condit Extremes, CEA, F-91680 Bruyeresle Chatel, France
关键词
PITCH ANGLE SCATTERING; COHERENT VLF WAVES; MAGNETIC-FIELD; ENERGETIC ELECTRONS; PARTICLE INTERACTIONS; ADIABATIC-INVARIANT; CHORUS GENERATION; CYCLOTRON MASER; LION ROARS; ACCELERATION;
D O I
10.1063/5.0131297
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Electron resonant interaction with electromagnetic whistler-mode waves plays a crucial role for electron flux dynamics in planetary magnetospheres. One of the most intense types of whistler-mode waves consists of chorus waves generated via nonlinear resonant interaction with hot anisotropic electrons and propagating with time-varying (drifting) wave frequency. Electron nonlinear resonant interactions with such waves in a dipole magnetic field are well described analytically within the Hamiltonian approach under the approximation of monochromatic waves (of constant frequency). This paper aims to generalize this description to waves with drifting frequency. We show how frequency drift modifies two main nonlinear resonant effects: phase trapping and phase bunching. The obtained results contribute to the development of the Hamiltonian approach for wave-particle resonant interactions.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] STOREY ANGLE FOR WHISTLER-MODE WAVES
    SAZHIN, SS
    PLANETARY AND SPACE SCIENCE, 1990, 38 (03) : 327 - 331
  • [32] ELECTRON-BEAM EXCITATION OF UPSTREAM WAVES IN THE WHISTLER-MODE FREQUENCY-RANGE - REPLY
    WONG, HK
    SMITH, CW
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1995, 100 (A9) : 17141 - 17142
  • [33] Ultralow-frequency modulation of whistler-mode wave growth
    Watt, C. E. J.
    Degeling, A. W.
    Rankin, R.
    Murphy, K. R.
    Rae, I. J.
    Singer, H. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [34] WHISTLER-MODE WAVES IN THE JOVIAN MAGNETOSHEATH
    LIN, NG
    KELLOGG, PJ
    THIESSEN, JP
    LENGYELFREY, D
    TSURUTANI, BT
    PHILLIPS, JL
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1994, 99 (A12) : 23527 - 23539
  • [35] Whistler-mode chorus waves at Mars
    Teng, Shangchun
    Wu, Yifan
    Harada, Yuki
    Bortnik, Jacob
    Zonca, Fulvio
    Chen, Liu
    Tao, Xin
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [36] NONLINEAR WAVE-PARTICLE INTERACTION FOR CW WHISTLER-MODE SIGNALS IN MAGNETOSPHERE - ANALYSIS AND RESULTS
    NEWMAN, CE
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1973, 54 (11): : 1188 - 1188
  • [37] Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves
    Artemyev, Anton V.
    Neishtadt, Anatoly I.
    Vasiliev, Alexei A.
    Mourenas, Didier
    JOURNAL OF PLASMA PHYSICS, 2018, 84 (02)
  • [38] Marginal stability of whistler-mode waves in plasma with multiple electron populations
    Frantsuzov, V. A.
    Artemyev, A. V.
    Shustov, P. I.
    Zhang, X. -J.
    PHYSICS OF PLASMAS, 2022, 29 (05)
  • [39] THE WHISTLER-MODE BOW WAVE OF AN ASTEROID
    GURNETT, DA
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1995, 100 (A11) : 21623 - 21629
  • [40] Unified View of Nonlinear Wave Structures Associated with Whistler-Mode Chorus
    An, Xin
    Li, Jinxing
    Bortnik, Jacob
    Decyk, Viktor
    Kletzing, Craig
    Hospodarsky, George
    PHYSICAL REVIEW LETTERS, 2019, 122 (04)