Electron acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode chorus waves

被引:27
|
作者
Woodfield, E. E. [1 ]
Horne, R. B. [1 ]
Glauert, S. A. [1 ]
Menietti, J. D. [2 ]
Shprits, Y. Y. [3 ,4 ,5 ]
机构
[1] British Antarctic Survey, Cambridge CB3 0ET, England
[2] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[3] Skolkovo Inst Sci & Technol, Moscow, Russia
[4] MIT, Cambridge, MA 02139 USA
[5] Univ Calif Los Angeles, Los Angeles, CA USA
关键词
Magnetospheric physics; energetic particles; trapped; planetary magnetospheres; Space plasma physics; wave-particle interactions; ENERGY DIFFUSION-COEFFICIENTS; IO PLASMA TORUS; RADIATION BELT; RELATIVISTIC ELECTRONS; PITCH-ANGLE; MAGNETOSPHERE; INTERCHANGE; INNER; PARTICLES; EMISSION;
D O I
10.5194/angeo-31-1619-2013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Jupiter has the most intense radiation belts of all the outer planets. It is not yet known how electrons can be accelerated to energies of 10MeV or more. It has been suggested that cyclotron-resonant wave-particle interactions by chorus waves could accelerate electrons to a few MeV near the orbit of Io. Here we use the chorus wave intensities observed by the Galileo spacecraft to calculate the changes in electron flux as a result of pitch angle and energy diffusion. We show that, when the bandwidth of the waves and its variation with L are taken into account, pitch angle and energy diffusion due to chorus waves is a factor of 8 larger at L-shells greater than 10 than previously shown. We have used the latitudinal wave intensity profile from Galileo data to model the time evolution of the electron flux using the British Antarctic Survey Radiation Belt (BAS) model. This profile confines intense chorus waves near the magnetic equator with a peak intensity at similar to 5 degrees latitude. Electron fluxes in the BAS model increase by an order of magnitude for energies around 3 MeV. Extending our results to L = 14 shows that cyclotron-resonant interactions with chorus waves are equally important for electron acceleration beyond L = 10. These results suggest that there is significant electron acceleration by cyclotron-resonant interactions at Jupiter contributing to the creation of Jupiter's radiation belts and also increasing the range of L-shells over which this mechanism should be considered.
引用
收藏
页码:1619 / 1630
页数:12
相关论文
共 50 条
  • [1] Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus
    Horne, RB
    Thorne, RM
    GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (10) : 34 - 1
  • [2] Nonlinear Coupling Between Whistler-Mode Chorus and Electron Cyclotron Harmonic Waves in the Magnetosphere
    Gao, Zhonglei
    Su, Zhenpeng
    Xiao, Fuliang
    Summers, Danny
    Liu, Nigang
    Zheng, Huinan
    Wang, Yuming
    Wei, Fengsi
    Wang, Shui
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (23) : 12685 - 12693
  • [3] Whistler-mode chorus waves at Mars
    Shangchun Teng
    Yifan Wu
    Yuki Harada
    Jacob Bortnik
    Fulvio Zonca
    Liu Chen
    Xin Tao
    Nature Communications, 14 (1)
  • [4] Whistler-mode chorus waves at Mars
    Teng, Shangchun
    Wu, Yifan
    Harada, Yuki
    Bortnik, Jacob
    Zonca, Fulvio
    Chen, Liu
    Tao, Xin
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] Electron acceleration by Z-mode and whistler-mode waves
    Lee, K. H.
    Omura, Y.
    Lee, L. C.
    PHYSICS OF PLASMAS, 2013, 20 (11)
  • [6] Upper Limit of Outer Radiation Belt Electron Acceleration Driven by Whistler-Mode Chorus Waves
    Hua, Man
    Bortnik, Jacob
    Ma, Qianli
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (15)
  • [7] Electron acceleration in the magnetosphere by whistler-mode waves of varying frequency
    A. G. Demekhov
    V. Yu. Trakhtengerts
    M. J. Rycroft
    D. Nunn
    Geomagnetism and Aeronomy, 2006, 46 : 711 - 716
  • [8] Electron acceleration in the magnetosphere by whistler-mode waves of varying frequency
    Demekhov, A. G.
    Trakhtengerts, V. Yu.
    Rycroft, M. J.
    Nunn, D.
    GEOMAGNETISM AND AERONOMY, 2006, 46 (06) : 711 - 716
  • [9] The global mapping of electron precipitation and ionospheric conductance from whistler-mode chorus waves
    Gillespie, Dillon
    Connor, Hyunju Kim
    Ma, Qianli
    Zhang, Xiao-Jia
    Shen, Xiao-Chen
    Ozturk, Dogacan
    Meredith, Nigel P.
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2024, 11
  • [10] The effect of wave frequency drift on the electron nonlinear resonant interaction with whistler-mode waves
    Artemyev, Anton V. V.
    Albert, Jay M. M.
    Neishtadt, Anatoli I. I.
    Mourenas, Didier
    PHYSICS OF PLASMAS, 2023, 30 (01)