Influence of build direction on the ratchetting-fatigue interaction of heat-treated additively manufactured 316L stainless steel

被引:7
|
作者
Zhao, Jiahua [1 ]
Hu, Yanan [1 ]
Kan, Qianhua [1 ]
Miao, Hongchen [1 ]
Kang, Guozheng [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech & Aerosp Engn, Appl Mech & Struct Safety Key Lab Sichuan Prov, Chengdu 611756, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Laser powder bed fusion; X-ray microtomography; Low-cycle fatigue; Ratchetting; Build direction; AISI; 316L; MECHANICAL-PROPERTIES; CYCLE FATIGUE; HIGH-STRENGTH; PLASTIC-DEFORMATION; CROSS-SLIP; BEHAVIOR; STRAIN; MICROSTRUCTURE; TRANSFORMATION;
D O I
10.1016/j.ijfatigue.2024.108143
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study has investigated the cyclic deformation and ratchetting-fatigue interaction of 316L stainless steel fabricated by laser powder bed fusion (LPBF) and subjected to a 900 degrees C/2 h post-heat treatment, considering both the vertical and horizontal orientations. Strain- and stress-controlled low cycle fatigue (LCF) tests are conducted to explore the cyclic deformation and the effects of the mean stress and stress amplitude on the fatigue life and ratchetting deformation. A detailed analysis of the cyclic deformation mechanism is conducted through X-ray microtomography and transmission electron microscope (TEM) observations. The results show that post-heat treated LPBF 316L steel exhibits cyclic hardening followed by a non-saturated cyclic softening stage. This behavior is attributed to the evolution of dislocation density and dislocation patterns, and the formation of surface cracks. The ratchetting strain and its rate are sensitive to the mean stress and stress amplitude. The fatigue lives of vertically built specimens are slightly higher under strain-controlled loading conditions, but significantly lower under stress-controlled loading conditions than those of horizontally built ones. Furthermore, ratchetting deformation can promote fatigue damage, resulting in a reduction in fatigue life.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] The Fracture and Fragmentation Behaviour of Additively Manufactured Stainless Steel 316L
    Amott, R.
    Harris, E. J.
    Winter, R. E.
    Stirk, S. M.
    Chapman, D. J.
    Eakins, D. E.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2015, 2017, 1793
  • [32] Deformation and Fracture Behavior of Additively Manufactured 316L Stainless Steel
    Thak Sang Byun
    Maxim N. Gussev
    Timothy G. Lach
    JOM, 2024, 76 : 362 - 378
  • [33] Enhanced Corrosion Resistance of Additively Manufactured 316L Stainless Steel After Heat Treatment
    Zhou, Chengshuang
    Wang, Jing
    Hu, Shiyin
    Tao, Huimin
    Fang, Bei
    Li, Long
    Zheng, Jinyang
    Zhang, Lin
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (14)
  • [34] Influence of nitrogen content on the corrosion fatigue behavior of additively manufactured AISI 316L stainless steel in chloride solution
    Stern, Felix
    Becker, Louis
    Tenkamp, Jochen
    Boes, Johannes
    Lentz, Jonathan
    Weber, Sebastian
    Walther, Frank
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 172
  • [35] Influence of native oxide film on corrosion behavior of additively manufactured stainless steel 316L
    Choundraj, Jahnavi Desai
    Kelly, Robert G.
    Monikandan, Rebhadevi
    Singh, Preet M.
    Kacher, Josh
    CORROSION SCIENCE, 2023, 217
  • [36] Influence of carbon nanotubes on microstructure and corrosion performance of additively manufactured 316L stainless steel
    Vukkum, Venkata Bhuvaneswari
    Christudasjustus, Jijo
    Ansell, Troy Y.
    Nieto, Andy
    Gupta, Rajeev Kumar
    CORROSION SCIENCE, 2023, 224
  • [37] Fatigue strength improvement of additively manufactured 316L stainless steel with high porosity through preloading
    Subasic, Mustafa
    Olsson, Marten
    Dadbakhsh, Sasan
    Zhao, Xiaoyu
    Krakhmalev, Pavel
    Mansour, Rami
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 180
  • [38] Fatigue crack growth behavior of wire arc additively manufactured 316L austenitic stainless steel
    Chen, Yangyu
    Chen, Man-Tai
    Zhao, Ou
    Rossi, Barbara
    Ruan, Xiongfeng
    THIN-WALLED STRUCTURES, 2025, 212
  • [39] Using shot peening and burnishing to improve fatigue performance of additively manufactured 316L stainless steel
    Sayadi, Daniyal
    Rangrizian, Hossein
    Khodabandeh, Alireza
    Nezarati, Masoud
    Hemasian Etefagh, Ardeshir
    Khajehzadeh, Mohsen
    Razfar, Mohammad Reza
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2024, 238 (04) : 707 - 722
  • [40] Fatigue behavior of additively manufactured 316L stainless steel: Competition between the effects of defects and microstructure
    Roirand, Hugo
    Hor, Anis
    Malard, Benoit
    Saintier, Nicolas
    INTERNATIONAL JOURNAL OF FATIGUE, 2025, 190