Influence of build direction on the ratchetting-fatigue interaction of heat-treated additively manufactured 316L stainless steel

被引:7
|
作者
Zhao, Jiahua [1 ]
Hu, Yanan [1 ]
Kan, Qianhua [1 ]
Miao, Hongchen [1 ]
Kang, Guozheng [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech & Aerosp Engn, Appl Mech & Struct Safety Key Lab Sichuan Prov, Chengdu 611756, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Laser powder bed fusion; X-ray microtomography; Low-cycle fatigue; Ratchetting; Build direction; AISI; 316L; MECHANICAL-PROPERTIES; CYCLE FATIGUE; HIGH-STRENGTH; PLASTIC-DEFORMATION; CROSS-SLIP; BEHAVIOR; STRAIN; MICROSTRUCTURE; TRANSFORMATION;
D O I
10.1016/j.ijfatigue.2024.108143
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study has investigated the cyclic deformation and ratchetting-fatigue interaction of 316L stainless steel fabricated by laser powder bed fusion (LPBF) and subjected to a 900 degrees C/2 h post-heat treatment, considering both the vertical and horizontal orientations. Strain- and stress-controlled low cycle fatigue (LCF) tests are conducted to explore the cyclic deformation and the effects of the mean stress and stress amplitude on the fatigue life and ratchetting deformation. A detailed analysis of the cyclic deformation mechanism is conducted through X-ray microtomography and transmission electron microscope (TEM) observations. The results show that post-heat treated LPBF 316L steel exhibits cyclic hardening followed by a non-saturated cyclic softening stage. This behavior is attributed to the evolution of dislocation density and dislocation patterns, and the formation of surface cracks. The ratchetting strain and its rate are sensitive to the mean stress and stress amplitude. The fatigue lives of vertically built specimens are slightly higher under strain-controlled loading conditions, but significantly lower under stress-controlled loading conditions than those of horizontally built ones. Furthermore, ratchetting deformation can promote fatigue damage, resulting in a reduction in fatigue life.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Mechanical performance of additively manufactured austenitic 316L stainless steel
    Kim, Kyu-Tae
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2022, 54 (01) : 244 - 254
  • [22] THE MECHANICAL PERFORMANCE OF ADDITIVELY MANUFACTURED 316L AUSTENITIC STAINLESS STEEL
    Wisbey, Andrew
    Coon, David
    Chatterton, Mark
    Barras, Josh
    Guo, Da
    Yan, Kun
    Callaghan, Mark
    Mirihanage, Wajira
    PROCEEDINGS OF ASME 2022 PRESSURE VESSELS AND PIPING CONFERENCE, PVP2022, VOL 4A, 2022,
  • [23] Heterogeneous slip localization in an additively manufactured 316L stainless steel
    Bean, C.
    Wang, F.
    Charpagne, M. A.
    Villechaise, P.
    Valle, V.
    Agnew, S. R.
    Gianola, D. S.
    Pollock, T. M.
    Stinville, J. C.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2022, 159
  • [24] Structural representation of additively manufactured 316L austenitic stainless steel
    Bronkhorst, C. A.
    Mayeur, J. R.
    Livescu, V.
    Pokharel, R.
    Brown, D. W.
    Gray, G. T., III
    INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 118 : 70 - 86
  • [25] Mechanical and Corrosion Performance of Additively Manufactured Stainless Steel 316L
    Zharkynbekova, Guldariya
    Yuldasheva, Dilnaz
    Ospanov, Alan
    Talamona, Didier
    Perveen, Asma
    2024 15TH INTERNATIONAL CONFERENCE ON MECHANICAL AND INTELLIGENT MANUFACTURING TECHNOLOGIES, ICMIMT 2024, 2024, : 154 - 158
  • [26] Strengthening the additively manufactured 316L stainless steel by adding Al
    Xu, Kang
    Yu, Mingxiong
    Huang, Sen
    Tian, Hongsheng
    Mao, Lizhong
    Liu, Xinjian
    Zheng, Danfeng
    Gao, Hongwei
    Zhao, Dengbiao
    Li, Bochuan
    MATERIALS LETTERS, 2024, 357
  • [27] Anisotropic spall failure of additively manufactured 316L stainless steel
    Lamb, K.
    Koube, K.
    Kacher, J.
    Sloop, T.
    Thadhani, N.
    Babu, S. S.
    ADDITIVE MANUFACTURING, 2023, 66
  • [28] Deformation and Fracture Behavior of Additively Manufactured 316L Stainless Steel
    Byun, Thak Sang
    Gussev, Maxim N.
    Lach, Timothy G.
    JOM, 2024, 76 (01) : 362 - 378
  • [29] Predicting ductile tearing of additively manufactured 316L stainless steel
    Neilsen, Michael K.
    INTERNATIONAL JOURNAL OF FRACTURE, 2019, 218 (1-2) : 195 - 207
  • [30] Predicting ductile tearing of additively manufactured 316L stainless steel
    Michael K. Neilsen
    International Journal of Fracture, 2019, 218 : 195 - 207