Studies on polyoxymethylene dimethyl ethers production from dimethoxymethane and 1,3,5-trioxane over SO42-/ZrO2-TiO2

被引:2
|
作者
Yao, Haoyu [1 ]
Li, Jiangcheng [2 ]
Li, Jiangyan [3 ]
Liang, Xiangfeng [1 ]
Wang, Gang [4 ]
Luo, Haiyan [5 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy, Environm Resources, Green Chem Separat Grp, Qingdao 266101, Peoples R China
[2] Beijing Insight Chem Co Ltd, Beijing 101121, Peoples R China
[3] Merck Sharp & Dohme R&D China Co Ltd, Beijing 100101, Peoples R China
[4] Hokkaido Univ, Inst Catalysis, N-21,W-10, Sapporo 0010021, Japan
[5] Chinese Acad Sci, CAS Key Lab Green Proc & Engn, Inst Proc Engn, Beijing 100190, Peoples R China
来源
CHINESE JOURNAL OF CHEMICAL ENGINEERING | 2023年 / 61卷
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Polyoxymethylene dimethyl ethers; SO2-4/ZrO2-TiO2; Chain propagation; Kinetics; Deactivation behavior; CHEMICAL-EQUILIBRIUM; CATALYZED FORMATION; EFFICIENT SYNTHESIS; METHANOL OXIDATION; REACTION-KINETICS; GRAPHENE OXIDE; IONIC LIQUIDS; ACID SITES; FUEL; FORMALDEHYDE;
D O I
10.1016/j.cjche.2023.03.018
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Polyoxymethylene dimethyl ethers (OMEs) with physical properties similar to those of diesel has received significant attention as green additives for soot emission suppression. Herein, series of SO2- 4 /ZrO2-TiO2 catalysts were developed for OMEs production from dimethoxymethane (DMM) and 1,3,5-trioxane through sequential formaldehyde monomer insertion into C-O bond of DMM. Not Lewis but Bronsted acid sites were identified to be active for the decomposition of 1,3,5-trioxane into formaldehyde unit, however, both of them are effective for the chain propagation of DMM via formalde-hyde unit insertion into C-O bond. Kinetic studies indicated each chain growth step exhibited the same parameters and activation barrier on corresponding Bronsted and Lewis acid sites due to the same reac-tion mechanism and very similar chemical structure of OMEs. Also, the catalytic stability investigation suggested the deactivation behavior was derived from the carbon deposition, and the decay factor could be exponentially correlated with the amount of coke accumulation.& COPY; 2023 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.
引用
收藏
页码:24 / 36
页数:13
相关论文
共 50 条
  • [41] 固体超强酸SO42-/ZrO2-TiO2催化合成富马酸二甲酯
    邓启玮
    杭州化工, 2002, (02) : 14 - 16
  • [42] A novel insight of the catalytic mechanism of ionic liquids and H2SO4 on the synthesis of 1,3,5-trioxane
    Yuan, Ke
    Zhang, Tao
    Lv, Li
    Wang, Yan
    Zou, Zongpeng
    Tang, Shengwei
    CHEMICAL ENGINEERING SCIENCE, 2025, 309
  • [43] 镧改性固体超强酸SO42-/ZrO2-TiO2/La3+催化剂的制备及性能研究
    崔秀兰
    郭海福
    林明丽
    郭俊文
    吴燕妮
    中国稀土学报, 2003, (04) : 460 - 464
  • [44] SO42-/ZrO2-TiO2复合催化剂的制备及其在烷基糖苷合成中的应用
    于兵川
    吴洪特
    祝中军
    日用化学工业, 2005, (01) : 15 - 18
  • [45] 高岭土负载SO42-/ZrO2-TiO2催化剂的制备及其在缩酮合成中的应用
    张恒
    王敏
    朱万诚
    李言信
    赵斌
    应用化学, 2011, 28 (05) : 608 - 610
  • [46] Esterification over Nano solid superacid SO42-/ZrO2-Sm2O3-SiO2
    Li, Fang
    Ding, Chunmei
    ADVANCED ENGINEERING MATERIALS, PTS 1-3, 2011, 194-196 : 2503 - 2506
  • [47] 复合固体超强酸SO42-/ZrO2-TiO2催化合成己二酸二(2-乙基)己酯
    吴洪特
    于兵川
    葛胜祥
    化学与生物工程, 2007, (09) : 13 - 15
  • [48] Enhancing resistance to CaO&PbO poisoning of CeO2/TiO2 NH3-SCR catalyst via hybrid with SO42-/ZrO2: Dual functions of SO42-/ZrO2
    Zhang, Chenguang
    Feng, Shuo
    Yuan, Peng
    Zhao, Peng
    Gao, Pei
    Li, Shuhao
    Shi, Qiqi
    Kang, Dongrui
    Xing, Yuye
    Shen, Boxiong
    FUEL, 2024, 365
  • [49] Catalytic alcoholysis of alkaline extracted lignin for the production of aromatic esters over SO42-/ZrO2-ATP
    Wu, Zhen
    Zhang, Jun
    Pan, Qingqing
    Li, Xun
    Zhang, Yu
    Wang, Fei
    RSC ADVANCES, 2018, 8 (22): : 12344 - 12353
  • [50] Preparation and Characterization of SO42-/TiO2-ZrO2/La3+ and Their Photocatalytic Performance for the Dehydration of Xylose to Furfural
    Li, Huiling
    Wang, Wenju
    Ren, Junli
    Peng, Feng
    Sun, Runcang
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2014, 8 (01) : 50 - 58