Studies on polyoxymethylene dimethyl ethers production from dimethoxymethane and 1,3,5-trioxane over SO42-/ZrO2-TiO2

被引:2
|
作者
Yao, Haoyu [1 ]
Li, Jiangcheng [2 ]
Li, Jiangyan [3 ]
Liang, Xiangfeng [1 ]
Wang, Gang [4 ]
Luo, Haiyan [5 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy, Environm Resources, Green Chem Separat Grp, Qingdao 266101, Peoples R China
[2] Beijing Insight Chem Co Ltd, Beijing 101121, Peoples R China
[3] Merck Sharp & Dohme R&D China Co Ltd, Beijing 100101, Peoples R China
[4] Hokkaido Univ, Inst Catalysis, N-21,W-10, Sapporo 0010021, Japan
[5] Chinese Acad Sci, CAS Key Lab Green Proc & Engn, Inst Proc Engn, Beijing 100190, Peoples R China
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Polyoxymethylene dimethyl ethers; SO2-4/ZrO2-TiO2; Chain propagation; Kinetics; Deactivation behavior; CHEMICAL-EQUILIBRIUM; CATALYZED FORMATION; EFFICIENT SYNTHESIS; METHANOL OXIDATION; REACTION-KINETICS; GRAPHENE OXIDE; IONIC LIQUIDS; ACID SITES; FUEL; FORMALDEHYDE;
D O I
10.1016/j.cjche.2023.03.018
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Polyoxymethylene dimethyl ethers (OMEs) with physical properties similar to those of diesel has received significant attention as green additives for soot emission suppression. Herein, series of SO2- 4 /ZrO2-TiO2 catalysts were developed for OMEs production from dimethoxymethane (DMM) and 1,3,5-trioxane through sequential formaldehyde monomer insertion into C-O bond of DMM. Not Lewis but Bronsted acid sites were identified to be active for the decomposition of 1,3,5-trioxane into formaldehyde unit, however, both of them are effective for the chain propagation of DMM via formalde-hyde unit insertion into C-O bond. Kinetic studies indicated each chain growth step exhibited the same parameters and activation barrier on corresponding Bronsted and Lewis acid sites due to the same reac-tion mechanism and very similar chemical structure of OMEs. Also, the catalytic stability investigation suggested the deactivation behavior was derived from the carbon deposition, and the decay factor could be exponentially correlated with the amount of coke accumulation.& COPY; 2023 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.
引用
收藏
页码:24 / 36
页数:13
相关论文
共 50 条
  • [21] 微波辐射下SO42-/ZrO2-TiO2催化合成乙酸诺卜酯
    罗金岳
    刘传涛
    林产化学与工业, 2008, 28 (06) : 53 - 57
  • [22] SO42-/ZrO2-TiO2固体酸催化剂催化合成苹果酯
    刘西成
    广州化工, 2011, 39 (09) : 96 - 97
  • [23] 固体超强酸SO42-/ZrO2-TiO2的声化学制备及表征
    张学富
    赵先锐
    陈同云
    工业催化, 2012, 20 (02) : 24 - 28
  • [24] 生物柴油催化剂——SO42-/ZrO2-TiO2固体酸的制备及表征
    李丰亚
    靳福全
    范田水
    唐兰兰
    张凡
    赵晓莎
    中国油脂, 2013, 38 (06) : 79 - 83
  • [25] Study on catalytic properties and stability of SO42-/ZrO2-TiO2 solid superacid prepared by ageing method at low temperature
    Chen, TY
    Gu, XP
    Hu, XY
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2002, 18 (04) : 378 - 382
  • [26] SO42-/ZrO2-TiO2固体酸催化合成环己酮乙二醇缩酮
    王敏
    张恒
    李言信
    赵斌
    工业催化, 2010, 18 (01) : 62 - 65
  • [27] SO42-/ZrO2-TiO2的制备、表征及其催化合成丙酸正丁酯
    董成
    王刚
    侯鑫
    徐骏
    张立庆
    浙江科技学院学报, 2013, 25 (06) : 419 - 424
  • [28] 固体超强酸SO42-/ZrO2-TiO2催化苯胺N甲基化反应研究
    傅翠蓉
    郝金库
    赵小军
    韩维涛
    施敏轶
    杨恩翠
    孙菲菲
    精细石油化工, 1999, (04) : 40 - 43
  • [29] Catalytic Cracking of Inedible Oils for the Production of Drop-In Biofuels over a SO42-/TiO2-ZrO2 Catalyst
    Zhang, Jun
    Wu, Zhen
    Li, Xun
    Zhang, Yu
    Bao, Zhenghong
    Bai, Lei
    Wang, Fei
    ENERGY & FUELS, 2020, 34 (11) : 14204 - 14214
  • [30] Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42-/ZrO2 and SO42-/ZrO2-Al2O3 solid acid catalysts
    Yan, Hongpeng
    Yang, Yu
    Tong, Dongmei
    Xiang, Xi
    Hu, Changwei
    CATALYSIS COMMUNICATIONS, 2009, 10 (11) : 1558 - 1563