Deep Adaptive Ensemble Filter for Non-Intrusive Residential Load Monitoring

被引:3
|
作者
Kianpoor, Nasrin [1 ]
Hoff, Bjarte [1 ]
Ostrem, Trond [1 ]
机构
[1] UiT Arctic Univ Norway, Dept Elect Engn, N-8514 Narvik, Norway
关键词
load disaggregation; non-intrusive load monitoring; flexible load; signal processing; deep learning; DISAGGREGATION;
D O I
10.3390/s23041992
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Identifying flexible loads, such as a heat pump, has an essential role in a home energy management system. In this study, an adaptive ensemble filtering framework integrated with long short-term memory (LSTM) is proposed for identifying flexible loads. The proposed framework, called AEFLSTM, takes advantage of filtering techniques and the representational power of LSTM for load disaggregation by filtering noise from the total power and learning the long-term dependencies of flexible loads. Furthermore, the proposed framework is adaptive and searches ensemble filtering techniques, including discrete wavelet transform, low-pass filter, and seasonality decomposition, to find the best filtering method for disaggregating different flexible loads (e.g., heat pumps). Experimental results are presented for estimating the electricity consumption of a heat pump, a refrigerator, and a dishwasher from the total power of a residential house in British Columbia (a publicly available use case). The results show that AEFLSTM can reduce the loss error (mean absolute error) by 57.4%, 44%, and 55.5% for estimating the power consumption of the heat pump, refrigerator, and dishwasher, respectively, compared to the stand-alone LSTM model. The proposed approach is used for another dataset containing measurements of an electric vehicle to further support the validity of the method. AEFLSTM is able to improve the result for disaggregating an electric vehicle by 22.5%.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Review of Non-intrusive Load Appliance Monitoring
    Dan, Wang
    Li, Huang Xiao
    Ce, Ye Shu
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 18 - 23
  • [32] Basic Summary of Non-intrusive Load Monitoring
    Zhang, Lu
    Zhu, Lin
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 372 - 376
  • [33] PATH SIGNATURES FOR NON-INTRUSIVE LOAD MONITORING
    Moore, Paul
    Iliant, Theodor-Mihai
    Ion, Filip-Alexandru
    Wu, Yue
    Lyons, Terry
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3808 - 3812
  • [34] Thresholding methods in non-intrusive load monitoring
    Daniel Precioso
    David Gómez-Ullate
    The Journal of Supercomputing, 2023, 79 : 14039 - 14062
  • [35] An Overview of Non-Intrusive Load Monitoring Methodologies
    Abubakar, Isiyaku
    Khalid, S. N.
    Mustafa, M. W.
    Shareef, Hussain
    Mustapha, Mamunu
    2015 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2015, : 54 - 59
  • [36] Federated Learning for Non-intrusive Load Monitoring
    Meng, Zhaorui
    Xie, Xiaozhu
    Xie, Yanqi
    IAENG International Journal of Applied Mathematics, 2023, 53 (03)
  • [37] SmartM: A Non-intrusive Load Monitoring Platform
    Liu, Xiufeng
    Bolwig, Simon
    Nielsen, Per Sieverts
    BUSINESS INFORMATION SYSTEMS WORKSHOPS, BIS 2019, 2019, 373 : 424 - 434
  • [38] Online non-intrusive load monitoring: A review
    Cruz-Rangel, David
    Ocampo-Martinez, Carlos
    Diaz-Rozo, Javier
    ENERGY NEXUS, 2025, 17
  • [39] Unsupervised Disaggregation for Non-intrusive Load Monitoring
    Pattem, Sundeep
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 2, 2012, : 515 - 520
  • [40] Transfer Learning for Non-Intrusive Load Monitoring
    D'Incecco, Michele
    Squartini, Stefano
    Zhong, Mingjun
    IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (02) : 1419 - 1429