Deep Adaptive Ensemble Filter for Non-Intrusive Residential Load Monitoring

被引:3
|
作者
Kianpoor, Nasrin [1 ]
Hoff, Bjarte [1 ]
Ostrem, Trond [1 ]
机构
[1] UiT Arctic Univ Norway, Dept Elect Engn, N-8514 Narvik, Norway
关键词
load disaggregation; non-intrusive load monitoring; flexible load; signal processing; deep learning; DISAGGREGATION;
D O I
10.3390/s23041992
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Identifying flexible loads, such as a heat pump, has an essential role in a home energy management system. In this study, an adaptive ensemble filtering framework integrated with long short-term memory (LSTM) is proposed for identifying flexible loads. The proposed framework, called AEFLSTM, takes advantage of filtering techniques and the representational power of LSTM for load disaggregation by filtering noise from the total power and learning the long-term dependencies of flexible loads. Furthermore, the proposed framework is adaptive and searches ensemble filtering techniques, including discrete wavelet transform, low-pass filter, and seasonality decomposition, to find the best filtering method for disaggregating different flexible loads (e.g., heat pumps). Experimental results are presented for estimating the electricity consumption of a heat pump, a refrigerator, and a dishwasher from the total power of a residential house in British Columbia (a publicly available use case). The results show that AEFLSTM can reduce the loss error (mean absolute error) by 57.4%, 44%, and 55.5% for estimating the power consumption of the heat pump, refrigerator, and dishwasher, respectively, compared to the stand-alone LSTM model. The proposed approach is used for another dataset containing measurements of an electric vehicle to further support the validity of the method. AEFLSTM is able to improve the result for disaggregating an electric vehicle by 22.5%.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Non-Intrusive Load Monitoring: A Review
    Schirmer, Pascal A.
    Mporas, Iosif
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (01) : 769 - 784
  • [22] A Survey on the Non-intrusive Load Monitoring
    Deng X.-P.
    Zhang G.-Q.
    Wei Q.-L.
    Peng W.
    Li C.-D.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (03): : 644 - 663
  • [23] Load Flexibility Forecast for DR Using Non-Intrusive Load Monitoring in the Residential Sector
    Lucas, Alexandre
    Jansen, Luca
    Andreadou, Nikoleta
    Kotsakis, Evangelos
    Masera, Marcelo
    ENERGIES, 2019, 12 (14):
  • [24] Non-Intrusive Load Monitoring of Residential Loads via Laplacian Eigenmaps and Hybrid Deep Learning Procedures
    Moradzadeh, Arash
    Zakeri, Sahar
    Oraibi, Waleed A.
    Mohammadi-Ivatloo, Behnam
    Abdul-Malek, Zulkurnain
    Ghorbani, Reza
    SUSTAINABILITY, 2022, 14 (22)
  • [25] Non-intrusive Load Monitoring Based on Graph Total Variation for Residential Appliances
    Xiaoyang Ma
    Diwen Zheng
    Xiaoyong Deng
    Ying Wang
    Dawei Deng
    Wei Li
    Journal of Modern Power Systems and Clean Energy, 2024, 12 (03) : 947 - 957
  • [26] Non-Intrusive Load Monitoring Based on Graph Total Variation for Residential Appliances
    Ma, Xiaoyang
    Zheng, Diwen
    Deng, Xiaoyong
    Wang, Ying
    Deng, Dawei
    Li, Wei
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2024, 12 (03) : 947 - 957
  • [27] Transferable Tree-Based Ensemble Model for Non-Intrusive Load Monitoring
    Chang, Xiaomin
    Li, Wei
    Xia, Chunqiu
    Yang, Qiang
    Ma, Jin
    Yang, Ting
    Zomaya, Albert Y.
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2022, 7 (04): : 970 - 981
  • [28] Adaptive Non-Intrusive Load Monitoring Model using Bayesian Learning
    Iksan, Nur
    Supangkat, Suhono Harso
    2014 INTERNATIONAL CONFERENCE ON ICT FOR SMART SOCIETY (ICISS), 2014, : 232 - 235
  • [29] Dynamic adaptive modeling for non-intrusive load monitoring with unknown loads
    Wu, Zhao
    Wang, Chao
    Wu, Jing
    Wang, Xiujuan
    Li, Mingyong
    Dong, Yumin
    Zhu, Houyi
    Zhang, Huaiqing
    ENERGY AND BUILDINGS, 2025, 329
  • [30] Deep Learning-Based Non-Intrusive Commercial Load Monitoring
    Zhou, Mengran
    Shao, Shuai
    Wang, Xu
    Zhu, Ziwei
    Hu, Feng
    SENSORS, 2022, 22 (14)