Contrastive Semi-supervised Learning for Underwater Image Restoration via Reliable Bank

被引:97
|
作者
Huang, Shirui [1 ]
Wang, Keyan [1 ]
Liu, Huan [2 ]
Chen, Jun [2 ]
Li, Yunsong [1 ]
机构
[1] Xidian Univ, Xian, Peoples R China
[2] McMaster Univ, Hamilton, ON, Canada
关键词
QUALITY ASSESSMENT; ENHANCEMENT;
D O I
10.1109/CVPR52729.2023.01740
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the remarkable achievement of recent underwater image restoration techniques, the lack of labeled data has become a major hurdle for further progress. In this work, we propose a mean-teacher based Semi-supervised Underwater Image Restoration (Semi-UIR) framework to incorporate the unlabeled data into network training. However, the naive mean-teacher method suffers from two main problems: (1) The consistency loss used in training might become ineffective when the teacher's prediction is wrong. (2) Using L1 distance may cause the network to overfit wrong labels, resulting in confirmation bias. To address the above problems, we first introduce a reliable bank to store the "best-ever" outputs as pseudo ground truth. To assess the quality of outputs, we conduct an empirical analysis based on the monotonicity property to select the most trustworthy NR-IQA method. Besides, in view of the confirmation bias problem, we incorporate contrastive regularization to prevent the overfitting on wrong labels. Experimental results on both full-reference and non-reference underwater benchmarks demonstrate that our algorithm has obvious improvement over SOTA methods quantitatively and qualitatively. Code has been released at https://github.com/Huang-ShiRui/Semi-UIR.
引用
收藏
页码:18145 / 18155
页数:11
相关论文
共 50 条
  • [21] Uncertainty Global Contrastive Learning Framework for Semi-Supervised Medical Image Segmentation
    Liu, Hengyang
    Ren, Pengcheng
    Yuan, Yang
    Song, Chengyun
    Luo, Fen
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (01) : 433 - 442
  • [22] LEVERAGING HARD POSITIVES FOR CONTRASTIVE LEARNING IN SEMI-SUPERVISED MEDICAL IMAGE SEGMENTATION
    Tang Cheng
    Zeng Xinyi
    Zhou Luping
    Wu Xi
    Zhou Jiliu
    Wang Peng
    Wang Yan
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [23] Semi-supervised Contrastive Learning for Label-Efficient Medical Image Segmentation
    Hu, Xinrong
    Zeng, Dewen
    Xu, Xiaowei
    Shi, Yiyu
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 481 - 490
  • [24] Semi-Supervised Pixel Contrastive Learning Framework for Tissue Segmentation in Histopathological Image
    Shi, Jiangbo
    Gong, Tieliang
    Wang, Chunbao
    Li, Chen
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (01) : 97 - 108
  • [25] Entropy-guided contrastive learning for semi-supervised medical image segmentation
    Xie, Junsong
    Wu, Qian
    Zhu, Renju
    IET IMAGE PROCESSING, 2024, 18 (02) : 312 - 326
  • [26] DualGraph: Improving Semi-supervised Graph Classification via Dual Contrastive Learning
    Luo, Xiao
    Ju, Wei
    Qu, Meng
    Chen, Chong
    Deng, Minghua
    Hua, Xian-Sheng
    Zhang, Ming
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 699 - 712
  • [27] Combating Medical Label Noise via Robust Semi-supervised Contrastive Learning
    Chen, Bingzhi
    Ye, Zhanhao
    Liu, Yishu
    Zhang, Zheng
    Pan, Jiahui
    Zeng, Biqing
    Lu, Guangming
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 : 562 - 572
  • [28] CONTRASTIVE LEARNING FOR ONLINE SEMI-SUPERVISED GENERAL CONTINUAL LEARNING
    Michel, Nicolas
    Negrel, Romain
    Chierchia, Giovanni
    Bercher, Jean-Francois
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1896 - 1900
  • [29] Semi-supervised vanishing point detection with contrastive learning
    Wang, Yukun
    Gu, Shuo
    Liu, Yinbo
    Kong, Hui
    PATTERN RECOGNITION, 2024, 153
  • [30] CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation
    Singh, Ankit
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34