Communication-Efficient Quantum Algorithm for Distributed Machine Learning

被引:4
|
作者
Tang, Hao [1 ]
Li, Boning [2 ,3 ]
Wang, Guoqing [2 ,4 ]
Xu, Haowei [4 ]
Li, Changhao [2 ,4 ]
Barr, Ariel [1 ]
Cappellaro, Paola [2 ,3 ,4 ]
Li, Ju [1 ,4 ]
机构
[1] MIT, Dept Mat Sci & Engn, Massachusetts, MA 02139 USA
[2] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[3] MIT, Dept Phys, Massachusetts, MA 02139 USA
[4] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
关键词
723.4 Artificial Intelligence - 723.4.2 Machine Learning - 931.4 Quantum Theory; Quantum Mechanics;
D O I
10.1103/PhysRevLett.130.150602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The growing demands of remote detection and an increasing amount of training data make distributed machine learning under communication constraints a critical issue. This work provides a communication -efficient quantum algorithm that tackles two traditional machine learning problems, the least-square fitting and softmax regression problems, in the scenario where the dataset is distributed across two parties. Our quantum algorithm finds the model parameters with a communication complexity of O(log2(N)/e), where N is the number of data points and e is the bound on parameter errors. Compared to classical and other quantum methods that achieve the same goal, our methods provide a communication advantage in the scaling with data volume. The core of our methods, the quantum bipartite correlator algorithm that estimates the correlation or the Hamming distance of two bit strings distributed across two parties, may be further applied to other information processing tasks.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] FAST AND COMMUNICATION-EFFICIENT DISTRIBUTED PCA
    Gang, Arpita
    Raja, Haroon
    Bajwa, Waheed U.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7450 - 7454
  • [32] Communication-Efficient Distributed Eigenspace Estimation
    Charisopoulos, Vasileios
    Benson, Austin R.
    Damle, Anil
    [J]. SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2021, 3 (04): : 1067 - 1092
  • [33] A communication-efficient and privacy-aware distributed algorithm for sparse PCA
    Lei Wang
    Xin Liu
    Yin Zhang
    [J]. Computational Optimization and Applications, 2023, 85 : 1033 - 1072
  • [34] Communication-efficient distributed oblivious transfer
    Beimel, Amos
    Chee, Yeow Meng
    Wang, Huaxiong
    Zhang, Liang Feng
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (04) : 1142 - 1157
  • [35] Communication-Efficient Distributed Skyline Computation
    Zhang, Haoyu
    Zhang, Qin
    [J]. CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 437 - 446
  • [36] A communication-efficient and privacy-aware distributed algorithm for sparse PCA
    Wang, Lei
    Liu, Xin
    Zhang, Yin
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 85 (03) : 1033 - 1072
  • [37] Communication-efficient Distributed SGD with Sketching
    Ivkin, Nikita
    Rothchild, Daniel
    Ullah, Enayat
    Braverman, Vladimir
    Stoica, Ion
    Arora, Raman
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [38] Communication-Efficient Distributed Statistical Inference
    Jordan, Michael I.
    Lee, Jason D.
    Yang, Yun
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (526) : 668 - 681
  • [39] Communication-Efficient Federated Learning Algorithm Based on Event Triggering
    Gao H.
    Yang L.
    Zhu J.
    Zhang M.
    Wu Q.
    [J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2023, 45 (10): : 3710 - 3718
  • [40] D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization
    Mota, Joao F. C.
    Xavier, Joao M. F.
    Aguiar, Pedro M. Q.
    Pueschel, Markus
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (10) : 2718 - 2723