Effects of salt concentration on top wall bubble injection in a turbulent channel flow: bubble dynamics and wall drag reduction

被引:2
|
作者
Biswas, Subhajit [1 ,2 ]
Govardhan, Raghuraman N. [2 ]
机构
[1] Univ Southampton, Dept Aeronaut & Astronaut, Southampton SO17 1BJ, England
[2] Indian Inst Sci, Dept Mech Engn, Bangalore 560012, India
关键词
SKIN-FRICTION; BOUNDARY-LAYER; FRESH-WATER; COALESCENCE; AIR; ELECTROLYTES; TRANSITION; SINGLE; MODEL; LADEN;
D O I
10.1007/s00348-024-03770-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Most applications related to bubble drag reduction (BDR) occur in contaminated environments where the presence of different surface active agents modify bubble coalescence and hence, affect flow drag. Although there have been studies on bubble drag modifications with salt/surfactant, the effects of systematic variation in salt/surfactant concentration on bubble dynamics and drag remain relatively unexplored. Driven by this motivation, in the present work, we experimentally investigate the effects of salt concentration on the bubble dynamics and drag modification in a fully developed horizontal turbulent channel flow for top wall bubble injection, over a wide range of salt concentrations (0<M<0.08\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<M<0.08$$\end{document}, moles/litre), channel Reynolds number (22,500<Re<65,000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22{,}500<\text{Re}<65{,}000$$\end{document}), and injected bubble void fraction (0<alpha<0.16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <0.16$$\end{document}). The injected bubbles interact with the flow in the turbulent channel and as they move downstream reach an equilibrium state between the bubbly phase and the fully developed carrier phase that persists further downstream. The equilibrium state of the bubble dynamics is captured by high-speed visualizations and the corresponding drag is obtained from stream-wise pressure drop measurements within the channel. Increasing salt concentration levels is seen to lead to reduction in bubble coalescence and consequently in bubble size that modifies bubble deformability, migration, and distribution near the top wall, with the changes being dependent on the Re and alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} values. At low Re approximate to 22,500\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Re} \approx 22{,}500$$\end{document}, the addition of salt leads to a dramatic reduction in bubble sizes (similar to 100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 100$$\end{document} microns) from the very large coalesced bubbles (similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} cm) seen in the no-salt cases, with consequent changes in the bubble dynamics and increased drag (up to approximate to 70%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx 70\%$$\end{document}). The reduction in bubble sizes with salt addition leads to an increase in drag with salt concentration, which saturates beyond a critical salt concentration (MCritical\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\text{Critical}$$\end{document}). With increasing Re, due to the smaller time available for coalescence, the bubbles are relatively small even in the absence of salt and hence, the bubble dynamics is found to be less susceptible to modifications by the addition of salt, unlike at low Re, and hence, results in a smaller increase in drag and a lower MCritical\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\text{Critical}$$\end{document}. At the largest Re of about 65,000, both the bubble dynamics and drag are found to be very similar in both the no-salt and salt cases indicating that MCritical approximate to 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\text{Critical}\approx 0$$\end{document}. The present observations suggest that at low Re, the bubble dynamics aspects and flow modifications would be very different between salt water and fresh water conditions, whereas at large Re, the differences would be minimal. The present results can thus help deepen our understanding of bubbly flow applications in contaminated environments, such as those that occur in bubble-induced drag reductions in ships and pipelines.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Experimental and numerical study of wall phenomena of confined bubble flow in a square channel
    Evdokimenko, Ilia A.
    Blel, Walid
    Gentric, Caroline
    Vozhakov, Ivan S.
    Alekseev, Maksim V.
    Lukyanov, Andrey A.
    Legrand, Jack
    Thobie, Charlene
    Dechandol, Emmanuel
    Si-Ahmed, El-Khider
    Lobanov, Pavel D.
    CHEMICAL ENGINEERING SCIENCE, 2025, 301
  • [42] Modified flow field around single bubble in a horizontal wall turbulent boundary layer
    Division of Energy and Environmental System, Graduate School of Engineering, Hokkaido University, N13 W8, Sapporo-shi, Hokkaido, 060-8628, Japan
    Nihon Kikai Gakkai Ronbunshu, B, 2007, 6 (1298-1306):
  • [43] Drag reduction in turbulent pipe flow with feedback control applied partially to wall
    Fukagata, K
    Kasagi, N
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2003, 24 (04) : 480 - 490
  • [44] Pattern prediction by linear analysis of turbulent flow with drag reduction by wall oscillation
    Blesbois, Olivier
    Chernyshenko, Sergei I.
    Touber, Emile
    Leschziner, Michael A.
    JOURNAL OF FLUID MECHANICS, 2013, 724 : 607 - 641
  • [45] Drag reduction effect by a wave-like wall-normal body force in a turbulent channel flow
    Mamori, Hiroya
    Fukagata, Koji
    PHYSICS OF FLUIDS, 2014, 26 (11)
  • [46] The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor-Couette flow
    van Gils, Dennis P. M.
    Guzman, Daniela Narezo
    Sun, Chao
    Lohse, Detlef
    JOURNAL OF FLUID MECHANICS, 2013, 722 : 317 - 347
  • [47] Drag reduction in turbulent channel flows by a spanwise traveling wave of wall blowing and suction
    Huang, Yi
    Wang, Liang
    Fu, Song
    PHYSICS OF FLUIDS, 2021, 33 (09)
  • [48] Hydrogen bubble flow visualization and digital image analysis for drag reduction mechanism in wall turbulence with groove-riblet surface
    School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
    不详
    不详
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban), 2009, 9 (839-844): : 839 - 844
  • [49] Drag modulation by inertial particles in a drag-reduced turbulent channel flow with spanwise wall oscillation
    Gao, Wei
    Wang, Minmiao
    Parsani, Matteo
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [50] Experimental study of effects of spanwise oscillation of wall on drag reduction and turbulent flows
    Deng F.
    Zhao J.
    Dong H.
    Shan M.
    Tang Y.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2017, 38 (09): : 1380 - 1384