Effects of salt concentration on top wall bubble injection in a turbulent channel flow: bubble dynamics and wall drag reduction

被引:2
|
作者
Biswas, Subhajit [1 ,2 ]
Govardhan, Raghuraman N. [2 ]
机构
[1] Univ Southampton, Dept Aeronaut & Astronaut, Southampton SO17 1BJ, England
[2] Indian Inst Sci, Dept Mech Engn, Bangalore 560012, India
关键词
SKIN-FRICTION; BOUNDARY-LAYER; FRESH-WATER; COALESCENCE; AIR; ELECTROLYTES; TRANSITION; SINGLE; MODEL; LADEN;
D O I
10.1007/s00348-024-03770-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Most applications related to bubble drag reduction (BDR) occur in contaminated environments where the presence of different surface active agents modify bubble coalescence and hence, affect flow drag. Although there have been studies on bubble drag modifications with salt/surfactant, the effects of systematic variation in salt/surfactant concentration on bubble dynamics and drag remain relatively unexplored. Driven by this motivation, in the present work, we experimentally investigate the effects of salt concentration on the bubble dynamics and drag modification in a fully developed horizontal turbulent channel flow for top wall bubble injection, over a wide range of salt concentrations (0<M<0.08\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<M<0.08$$\end{document}, moles/litre), channel Reynolds number (22,500<Re<65,000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22{,}500<\text{Re}<65{,}000$$\end{document}), and injected bubble void fraction (0<alpha<0.16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <0.16$$\end{document}). The injected bubbles interact with the flow in the turbulent channel and as they move downstream reach an equilibrium state between the bubbly phase and the fully developed carrier phase that persists further downstream. The equilibrium state of the bubble dynamics is captured by high-speed visualizations and the corresponding drag is obtained from stream-wise pressure drop measurements within the channel. Increasing salt concentration levels is seen to lead to reduction in bubble coalescence and consequently in bubble size that modifies bubble deformability, migration, and distribution near the top wall, with the changes being dependent on the Re and alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} values. At low Re approximate to 22,500\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Re} \approx 22{,}500$$\end{document}, the addition of salt leads to a dramatic reduction in bubble sizes (similar to 100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 100$$\end{document} microns) from the very large coalesced bubbles (similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} cm) seen in the no-salt cases, with consequent changes in the bubble dynamics and increased drag (up to approximate to 70%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx 70\%$$\end{document}). The reduction in bubble sizes with salt addition leads to an increase in drag with salt concentration, which saturates beyond a critical salt concentration (MCritical\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\text{Critical}$$\end{document}). With increasing Re, due to the smaller time available for coalescence, the bubbles are relatively small even in the absence of salt and hence, the bubble dynamics is found to be less susceptible to modifications by the addition of salt, unlike at low Re, and hence, results in a smaller increase in drag and a lower MCritical\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\text{Critical}$$\end{document}. At the largest Re of about 65,000, both the bubble dynamics and drag are found to be very similar in both the no-salt and salt cases indicating that MCritical approximate to 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\text{Critical}\approx 0$$\end{document}. The present observations suggest that at low Re, the bubble dynamics aspects and flow modifications would be very different between salt water and fresh water conditions, whereas at large Re, the differences would be minimal. The present results can thus help deepen our understanding of bubbly flow applications in contaminated environments, such as those that occur in bubble-induced drag reductions in ships and pipelines.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Coupling effect of wall slip and spanwise oscillation on drag reduction in turbulent channel flow
    Li, Zexiang
    Ji, Songsong
    Duan, Huiling
    Lan, Shilong
    Zhang, Jinbai
    Lv, Pengyu
    PHYSICAL REVIEW FLUIDS, 2020, 5 (12):
  • [22] Turbulence and Bubble Break up in Slug Flow with Wall Injection
    Bandeira, Francisco J. S.
    Goncalves, Gabriel F. N.
    Loureiro, Juliana B. R.
    Freire, Atila P. Silva
    FLOW TURBULENCE AND COMBUSTION, 2017, 98 (03) : 923 - 945
  • [23] Turbulence and Bubble Break up in Slug Flow with Wall Injection
    Francisco J. S. Bandeira
    Gabriel F. N. Gonçalves
    Juliana B. R. Loureiro
    Atila P. Silva Freire
    Flow, Turbulence and Combustion, 2017, 98 : 923 - 945
  • [24] Repetitive bubble injection promoting frictional drag reduction in high-speed horizontal turbulent channel flows
    Tanaka, Taiji
    Oishi, Yoshihiko
    Park, Hyun Jin
    Tasaka, Yuji
    Murai, Yuichi
    Kawakita, Chiharu
    OCEAN ENGINEERING, 2021, 239
  • [25] Turbulent drag reduction by wall deformation synchronized with flow acceleration
    Matsumura, Ryo
    Koyama, Shuhei
    Hagiwara, Yoshimichi
    IUTAM SYMPOSIUM ON COMPUTATIONAL PHYSICS AND NEW PERSPECTIVES IN TURBULENCE, 2008, 4 : 385 - +
  • [26] The influence of wall roughness on bubble drag reduction in Taylor-Couette turbulence
    Verschoof, Ruben A.
    Bakhuis, Dennis
    Bullee, Pim A.
    Huisman, Sander G.
    Sun, Chao
    Lohse, Detlef
    JOURNAL OF FLUID MECHANICS, 2018, 851 : 436 - 446
  • [27] TURBULENT STRUCTURE IN A CHANNEL FLOW WITH POLYMER INJECTION AT THE WALL
    WALKER, DT
    TIEDERMAN, WG
    JOURNAL OF FLUID MECHANICS, 1990, 218 : 377 - 403
  • [28] Drag reduction and transient growth of a streak in a spanwise wall-oscillatory turbulent channel flow
    Yakeno, A.
    PHYSICS OF FLUIDS, 2021, 33 (06)
  • [29] Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction
    Viotti, Claudio
    Quadrio, Maurizio
    Luchini, Paolo
    PHYSICS OF FLUIDS, 2009, 21 (11) : 1 - 9
  • [30] Turbulent drag reduction by spanwise oscillations of a channel wall with porous layer
    Li, Qing-Xiang
    Pan, Ming
    Zhou, Quan
    Dong, Yu-Hong
    COMPUTERS & FLUIDS, 2019, 180 : 1 - 10