Generative adversarial networks with physical sound field priors

被引:5
|
作者
Karakonstantis, Xenofon [1 ]
Fernandez-Grande, Efren [1 ]
机构
[1] Tech Univ Denmark, Dept Elect & Photon Engn, Acoust Technol, Lyngby, Denmark
来源
关键词
SOURCE LOCALIZATION; RECONSTRUCTION; INTERPOLATION;
D O I
10.1121/10.0020665
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents a deep learning-based approach for the spatiotemporal reconstruction of sound fields using generative adversarial networks. The method utilises a plane wave basis and learns the underlying statistical distributions of pressure in rooms to accurately reconstruct sound fields from a limited number of measurements. The performance of the method is evaluated using two established datasets and compared to state-of-the-art methods. The results show that the model is able to achieve an improved reconstruction performance in terms of accuracy and energy retention, particularly in the high-frequency range and when extrapolating beyond the measurement region. Furthermore, the proposed method can handle a varying number of measurement positions and configurations without sacrificing performance. The results suggest that this approach provides a promising approach to sound field reconstruction using generative models that allow for a physically informed prior to acoustics problems.
引用
收藏
页码:1226 / 1238
页数:13
相关论文
共 50 条
  • [21] Constrained Generative Adversarial Networks
    Chao, Xiaopeng
    Cao, Jiangzhong
    Lu, Yuqin
    Dai, Qingyun
    Liang, Shangsong
    IEEE ACCESS, 2021, 9 : 19208 - 19218
  • [22] A Review on Generative Adversarial Networks
    De Silva, Dilum Maduranga
    Poravi, Guhanathan
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [23] Generative Adversarial Networks in Cardiology
    Skandarani, Youssef
    Lalande, Alain
    Afilalo, Jonathan
    Jodoin, Pierre-Marc
    CANADIAN JOURNAL OF CARDIOLOGY, 2022, 38 (02) : 196 - 203
  • [24] Structured Generative Adversarial Networks
    Deng, Zhijie
    Zhang, Hao
    Liang, Xiaodan
    Yang, Luona
    Xu, Shizhen
    Zhu, Jun
    Xing, Eric P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [25] Quantum generative adversarial networks
    Dallaire-Demers, Pierre-Luc
    Killoran, Nathan
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [26] A Review: Generative Adversarial Networks
    Gonog, Liang
    Zhou, Yimin
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 505 - 510
  • [27] Modular Generative Adversarial Networks
    Zhao, Bo
    Chang, Bo
    Jie, Zequn
    Sigal, Leonid
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 157 - 173
  • [28] Slimmable Generative Adversarial Networks
    Hou, Liang
    Yuan, Zehuan
    Huang, Lei
    Shen, Huawei
    Cheng, Xueqi
    Wang, Changhu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7746 - 7753
  • [29] Generative Adversarial Networks Quantization
    Mitrofanov, E.
    Grishkin, V.
    PHYSICS OF PARTICLES AND NUCLEI, 2024, 55 (03) : 563 - 565
  • [30] Coupled Generative Adversarial Networks
    Liu, Ming-Yu
    Tuzel, Oncel
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29