Spatio-temporal classification for polyp diagnosis

被引:1
|
作者
Puyal, Juana Gonzalez-Bueno [1 ,2 ]
Brandao, Patrick [2 ]
Ahmad, Omer F. [1 ]
Bhatia, Kanwal K. [2 ]
Toth, Daniel [2 ]
Kader, Rawen [1 ]
Lovat, Laurence [1 ]
Mountney, Peter [2 ]
Stoyanov, Danail [1 ]
机构
[1] UCL, Wellcome EPSRC, Ctr Intervent & Surg Sci WEISS, London W1W 7TY, England
[2] Odin Vis, London W1W 7TY, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
RECOGNITION; VALIDATION; SYSTEM;
D O I
10.1364/BOE.473446
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown promising results as clinical decision support tools. Yet polyp appearance during a procedure can vary, making automatic predictions unstable. In this paper, we investigate the use of spatio-temporal information to improve the performance of lesions classification as adenoma or non-adenoma. Two methods are implemented showing an increase in performance and robustness during extensive experiments both on internal and openly available benchmark datasets.
引用
收藏
页码:593 / 607
页数:15
相关论文
共 50 条
  • [31] Spatio-temporal deep learning method for ADHD fMRI classification
    Mao, Zhenyu
    Su, Yi
    Xu, Guangquan
    Wang, Xueping
    Huang, Yu
    Yue, Weihua
    Sun, Li
    Xiong, Naixue
    INFORMATION SCIENCES, 2019, 499 : 1 - 11
  • [32] Classification of Spatio-Temporal Trajectories Based on Support Vector Machines
    Cuenca-Jara, Jesus
    Terroso-Saenz, Fernando
    Sanchez-Iborra, Ramon
    Skarmeta-Gomez, Antonio F.
    ADVANCES IN PRACTICAL APPLICATIONS OF AGENTS, MULTI-AGENT SYSTEMS, AND COMPLEXITY: THE PAAMS COLLECTION, 2018, 10978 : 140 - 151
  • [33] Spatio-temporal patterns in CNNs for classification:: the winnerless competition principle
    Arena, Paolo
    Bedia, Manuel G.
    Fortuna, Luigi
    Lombardo, Davide
    Patane, Luca
    Velarde, Manuel G.
    PROCEEDINGS OF THE 2006 10TH IEEE INTERNATIONAL WORKSHOP ON CELLULAR NEURAL NETWORKS AND THEIR APPLICATIONS, 2006, : 41 - +
  • [34] Classification of Gaussian spatio-temporal data with stationary separable covariances
    Karaliute, Marta
    Ducinskas, Kestutis
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (02): : 363 - 374
  • [35] Spatio-temporal contextual image classification based on Spatial AdaBoost
    Nishii, R
    Eguchi, S
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 172 - 175
  • [36] Spatio-Temporal Encoding Improves Neuromorphic Tactile Texture Classification
    Gupta, Anupam Kumar
    Nakagawa-Silva, Andrei
    Lepora, Nathan F.
    Thakor, Nitish V.
    IEEE SENSORS JOURNAL, 2021, 21 (17) : 19038 - 19046
  • [37] Spatio-temporal trajectory data modeling for fishing gear classification
    Rodriguez-Albala, Juan Manuel
    Pena, Alejandro
    Melzi, Pietro
    Morales, Aythami
    Tolosana, Ruben
    Fierrez, Julian
    Vera-Rodriguez, Ruben
    Ortega-Garcia, Javier
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (02)
  • [38] Incremental Learning Algorithm for Spatio-Temporal Spike Pattern Classification
    Mohemmed, Ammar
    Kasabov, Nikola
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [39] Quantification and classification of locomotion patterns by spatio-temporal morphable models
    Giese, MA
    Poggio, T
    THIRD IEEE INTERNATIONAL WORKSHOP ON VISUAL SURVEILLANCE, PROCEEDINGS, 2000, : 27 - 34
  • [40] Prediction and Classification of Motion Trajectories Using Spatio-Temporal NMF
    Eggert, Julian P.
    Hellbach, Sven
    Kolarow, Alexander
    Koerner, Edgar
    Gross, Horst-Michael
    KI 2009: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5803 : 597 - +