Novel integration between propane pre-cooled mixed refrigerant LNG process and concentrated solar power system based on supercritical CO2 power cycle

被引:3
|
作者
Sleiti, Ahmad K. [1 ]
Al-Ammari, Wahib A. [1 ]
机构
[1] Qatar Univ, Coll Engn, Dept Mech & Ind Engn, Doha, Qatar
关键词
Propane pre-cooled mixed refrigerant; (C3MR); LNG; Concentrated solar power; Thermoeconomic analysis; Exergy analysis; SupercriticalCO(2) power cycles; GAS LIQUEFACTION PROCESS; THERMODYNAMIC ANALYSIS; MULTIOBJECTIVE OPTIMIZATION; EXERGOECONOMIC ANALYSIS; BRAYTON CYCLES; RANKINE-CYCLE; DESIGN; ENERGY; CONFIGURATION; TECHNOLOGIES;
D O I
10.1016/j.egyr.2023.04.012
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Liquefaction of natural gas (LNG) is an energy-intensive process with large CO2 emissions. This study addresses these problems by introducing a novel hybrid integration between the propane pre-cooled mixed-refrigerant (C3MR) liquefaction process and concentrated solar power (CSP), utilizing an intercooled supercritical CO2 power block. The proposed system is designed to minimize or eliminate the need for thermal energy storage (TES) and reduce CO2 emissions while providing economic benefits. These benefits are obtained mainly by recovering the cold energy of the flash-gas of the C3MR process through the precooling process of the sCO(2) cycle. Then, the flash-gas is stored and combusted (using an auxiliary heater (AH)) at nighttime or when CSP is insufficient to meet the power demand. Five integration cases are evaluated from energetic, exergetic, economic, and environmental points of view: the sCO(2) cycle is driven by CSP and its thermal energy storage (TES) without AH in Case-1, by CSP+TES+AH in Case-2 to Case-4 with different contribution from TES and AH, and by CSP+AH without TES in Case-5. In addition, this study optimizes the operating parameters of the hybrid system to further enhance its economic and environmental benefits. The proposed system reduces the CSP field size, minimizes or eliminates the need for TES, and reduces or eliminates CO2 emissions. The optimized results show that Case-2 and Case-5 reduced the levelized cost of electricity from 14.16(sic)/kWh to 10.35(sic)/kWh and 8.19(sic)/kWh, respectively, and reduced the CO2 emissions by 86% and 36%. This study contributes to the field by introducing a novel hybrid integration between the C3MR process and CSP system, providing thorough evaluations of its performance and benefits, and providing significant benefits to the decarbonization strategies of LNG and other industrial processes. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:4872 / 4892
页数:21
相关论文
共 50 条
  • [31] PRELIMINARY STUDY OF SUPERCRITICAL CO2 MIXED WITH GASES FOR POWER CYCLE IN WARM ENVIRONMENTS
    Baik, Seungjoon
    Lee, Jeong Ik
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2018, VOL 9, 2018,
  • [32] Solar Thermochemical CO2 Splitting Integrated with Supercritical CO2 Cycle for Efficient Fuel and Power Generation
    Yu, Xiangjun
    Lian, Wenlei
    Gao, Ke
    Jiang, Zhixing
    Tian, Cheng
    Sun, Nan
    Zheng, Hangbin
    Wang, Xinrui
    Song, Chao
    Liu, Xianglei
    ENERGIES, 2022, 15 (19)
  • [33] Thermoeconomic and environmental analysis and optimization of the supercritical CO2 cycle integration in a simple cycle power plant
    Sanchez Villafana, Eder Darwin
    Machuca Bueno, Juan Pablo Vargas
    APPLIED THERMAL ENGINEERING, 2019, 152 : 1 - 12
  • [34] Intelligent construction and optimization based on the heatsep method of a supercritical CO2 brayton cycle driven by a solar power tower system
    Zhai, Rongrong
    Chen, Yongan
    Li, Jingwei
    Du, Mingyang
    Yang, Yongping
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 276
  • [35] Integration design and control strategy of sCO 2 Brayton cycle for concentrated solar power system
    Hu F.
    Wang Z.
    Energy Reports, 2023, 9 : 2861 - 2868
  • [36] Theoretical analysis of a novel PCHE with enhanced rib structures for high-power supercritical CO2 Brayton cycle system based on solar energy
    Han, Zengxiao
    Guo, Jiangfeng
    Huai, Xiulan
    ENERGY, 2023, 270
  • [37] Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts
    Wang, Kun
    He, Ya-Ling
    Zhu, Han-Hui
    APPLIED ENERGY, 2017, 195 : 819 - 836
  • [38] Integration of the steam cycle and CO2 capture process in a decarbonization power plant
    Xu, Gang
    Hu, Yue
    Tang, Baoqiang
    Yang, Yongping
    Zhang, Kai
    Liu, Wenyi
    APPLIED THERMAL ENGINEERING, 2014, 73 (01) : 277 - 286
  • [39] Performance study of a novel supercritical CO2 solar-coal supplementary power generation system
    Tong, Yongjing
    Duan, Liqiang
    Jiang, Yue
    Yang, Ming
    Pang, Liping
    APPLIED THERMAL ENGINEERING, 2023, 218
  • [40] OPTIMAL DESIGN OF SUPERCRITICAL CO2 POWER CYCLE FOR HIGH TEMPERATURE GAS-COOLED REACTOR
    Zhou, Yujia
    Zhang, Yifan
    Li, Hongzhi
    Yao, Mingyu
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 6, ICONE31 2024, 2024,