Machine learning algorithms for predicting rainfall in India

被引:3
|
作者
Garai, Sandi [1 ,2 ]
Paul, Ranjit Kumar [3 ]
Yeasin, Md. [3 ]
Roy, H. S. [3 ]
Paul, A. K. [3 ]
机构
[1] ICAR Indian Agr Res Inst, Grad Sch, New Delhi 110012, India
[2] ICAR Indian Inst Agr Biotechnol, Ranchi 834003, Jharkhand, India
[3] ICAR Indian Agr Stat Res Inst, New Delhi 110 012, India
来源
CURRENT SCIENCE | 2024年 / 126卷 / 03期
关键词
Climate change; crop planning; empirical comparison; machine learning; prediction; rainfall; EMPIRICAL MODE DECOMPOSITION;
D O I
10.18520/cs/v126/i3/360-367
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Due to the changing climate and frequent occurrence of extreme events, farmers face significant challenges. Precise rainfall prediction is necessary for proper crop planning. The presence of nonlinearity and chaotic structure in the historical rainfall series distorts the performances of the usual prediction models. In the present study, algorithms based on complete ensemble empirical mode decomposition with adaptive noise combined with stochastic models like autoregressive integrated moving average and generalized autoregressive conditional heteroscedasticity; machine learning techniques like random forest, artificial neural network, support vector regression and kernel ridge regression (KRR) have been proposed for predicting rainfall series. KRR has been considered to combine predicted intrinsic mode functions and residuals generated by various algorithms to capture the volatility in the series. The proposed algorithms have been applied for predicting rainfall in three selected subdivisions of India, namely, Assam and Meghalaya, Konkan and Goa, and Punjab. An empirical comparison of the proposed algorithms with the existing models revealed that the developed models have outperformed the latter.
引用
收藏
页码:360 / 367
页数:8
相关论文
共 50 条
  • [1] Application of Machine Learning Algorithms in Predicting Extreme Rainfall Events in Rwanda
    Kagabo, James
    Kattel, Giri Raj
    Kazora, Jonah
    Shangwe, Charmant Nicolas
    Habiyakare, Fabien
    ATMOSPHERE, 2024, 15 (06)
  • [2] Supervised Rainfall Learning Model Using Machine Learning Algorithms
    Sharma, Amit Kumar
    Chaurasia, Sandeep
    Srivastava, Devesh Kumar
    INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018), 2018, 723 : 275 - 283
  • [3] Comparative Analysis of Machine Learning Algorithms for Rainfall Prediction
    Patil, Rudragoud
    Bedekar, Gayatri
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, ICIDCA 2021, 2022, 96 : 833 - 842
  • [4] Machine learning algorithms for predicting scapular kinematics
    Nicholson, Kristen F.
    Richardson, R. Tyler
    van Roden, Elizabeth A. Rapp
    Quinton, R. Garry
    Anzilotti, Kert F.
    Richards, James G.
    MEDICAL ENGINEERING & PHYSICS, 2019, 65 : 39 - 45
  • [5] Predicting property prices with machine learning algorithms
    Ho, Winky K. O.
    Tang, Bo-Sin
    Wong, Siu Wai
    JOURNAL OF PROPERTY RESEARCH, 2021, 38 (01) : 48 - 70
  • [6] Prediction of Flooding Due to Heavy Rainfall in India Using Machine Learning Algorithms: Providing Advanced Warning
    Balamurugan, R.
    Choudhary, Kshitiz
    Raja, S. P.
    IEEE SYSTEMS MAN AND CYBERNETICS MAGAZINE, 2022, 8 (04): : 26 - 33
  • [7] Machine learning algorithms for predicting smokeless tobacco status among women in Northeastern States, India
    Singh, Kh Jitenkumar
    Meitei, A. Jiran
    Alee, Nongzaimayum Tawfeeq
    Kriina, Mosoniro
    Haobijam, Nirendrakumar Singh
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2022, 13 (05) : 2629 - 2639
  • [8] Machine learning algorithms for predicting smokeless tobacco status among women in Northeastern States, India
    Kh. Jitenkumar Singh
    A. Jiran Meitei
    Nongzaimayum Tawfeeq Alee
    Mosoniro Kriina
    Nirendrakumar Singh Haobijam
    International Journal of System Assurance Engineering and Management, 2022, 13 : 2629 - 2639
  • [9] Rainfall Forecasting Using Machine Learning Algorithms for Localized Events
    Ganapathy, Ganapathy Pattukandan
    Srinivasan, Kathiravan
    Datta, Debajit
    Chang, Chuan-Yu
    Purohit, Om
    Zaalishvili, Vladislav
    Burdzieva, Olga
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 6333 - 6350
  • [10] Predicting of Credit Risk Using Machine Learning Algorithms
    Antony, Tisa Maria
    Kumar, B. Sathish
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 99 - 114