Machine learning algorithms for predicting scapular kinematics

被引:8
|
作者
Nicholson, Kristen F. [1 ]
Richardson, R. Tyler [2 ]
van Roden, Elizabeth A. Rapp [1 ]
Quinton, R. Garry [1 ]
Anzilotti, Kert F. [3 ]
Richards, James G. [1 ]
机构
[1] Univ Delaware, Biomech & Movement Sci Program, Newark, DE 19716 USA
[2] Penn State Harrisburg, Sch Behav Sci & Educ, Kinesiol Program, Middletown, PA USA
[3] Christiana Care Hlth Syst, Dept Radiol, Newark, DE USA
关键词
Shoulder mechanics; Machine learning; Neural networks; Biomechanics; ACROMION MARKER CLUSTER; MOTION ANALYSIS; VALIDATION; FLUOROSCOPY; TRANSLATION; ORIENTATION; ACCURACY;
D O I
10.1016/j.medengphy.2019.01.005
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The goal of this study was to develop and validate a non-invasive approach to estimate scapular kinematics in individual patients. We hypothesized that machine learning algorithms could be developed using motion capture data to accurately estimate dynamic scapula orientation based on measured humeral orientations and acromion process positions. The accuracy of the algorithms was evaluated against a gold standard of biplane fluoroscopy using a 2D to 3D fluoroscopy/model matching process. Individualized neural networks were developed for nine healthy adult shoulders. These models were used to predict scapulothoracic kinematics, and the predicted kinematics were compared to kinematics obtained using biplane fluoroscopy to determine the accuracy of the machine learning algorithms. Results showed correlations between predicted kinematics and validation kinematics. Estimated kinematics were within 10 of validation kinematics. We concluded that individualized machine learning algorithms show promise for providing accurate, non-invasive measurements of scapulothoracic kinematics. (C) 2019 IPEM. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 50 条
  • [1] Machine learning algorithms for predicting rainfall in India
    Garai, Sandi
    Paul, Ranjit Kumar
    Yeasin, Md.
    Roy, H. S.
    Paul, A. K.
    CURRENT SCIENCE, 2024, 126 (03): : 360 - 367
  • [2] Predicting property prices with machine learning algorithms
    Ho, Winky K. O.
    Tang, Bo-Sin
    Wong, Siu Wai
    JOURNAL OF PROPERTY RESEARCH, 2021, 38 (01) : 48 - 70
  • [3] Predicting of Credit Risk Using Machine Learning Algorithms
    Antony, Tisa Maria
    Kumar, B. Sathish
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 99 - 114
  • [4] PREDICTING HEART DISEASE USING MACHINE LEARNING ALGORITHMS
    Berdaly, A. K.
    Abdiahmetova, Z. M.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2022, 115 (03): : 101 - 111
  • [5] Machine Learning Algorithms for Predicting and Analyzing Arabic Sentiment
    Amani A. Aladeemy
    Theyazn H.H. Aldhyani
    Ali Alzahrani
    Eidah M. Alzahrani
    Osamah Ibrahim Khalaf
    Saleh Nagi Alsubari
    Sachin N. Deshmukh
    Mosleh Hmoud Al-Adhaileh
    SN Computer Science, 5 (8)
  • [6] Machine Learning Algorithms for Predicting Electricity Consumption of Buildings
    Hosseini, Soodeh
    Fard, Reyhane Hafezi
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 121 (04) : 3329 - 3341
  • [7] Machine Learning Algorithms for Predicting the Water Quality Index
    Hussein, Enas E.
    Baloch, Muhammad Yousuf Jat
    Nigar, Anam
    Abualkhair, Hussain F.
    Aldawood, Faisal Khaled
    Tageldin, Elsayed
    WATER, 2023, 15 (20)
  • [8] Machine Learning Algorithms for Predicting Fatty Liver Disease
    Pei, Xieyi
    Deng, Qingqing
    Liu, Zhuo
    Yan, Xiang
    Sun, Weiping
    ANNALS OF NUTRITION AND METABOLISM, 2021, 77 (01) : 38 - 45
  • [9] Predicting Workplace Injuries Using Machine Learning Algorithms
    Sukumar, Divya
    Zhang, Ji
    Tao, Xiaohui
    Wang, Xin
    Zhang, Wenbin
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 763 - 764
  • [10] Hybrid Machine Learning Algorithms for Predicting Academic Performance
    Sokkhey, Phauk
    Okazaki, Takeo
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (01) : 32 - 41