Machine learning algorithms for predicting rainfall in India

被引:3
|
作者
Garai, Sandi [1 ,2 ]
Paul, Ranjit Kumar [3 ]
Yeasin, Md. [3 ]
Roy, H. S. [3 ]
Paul, A. K. [3 ]
机构
[1] ICAR Indian Agr Res Inst, Grad Sch, New Delhi 110012, India
[2] ICAR Indian Inst Agr Biotechnol, Ranchi 834003, Jharkhand, India
[3] ICAR Indian Agr Stat Res Inst, New Delhi 110 012, India
来源
CURRENT SCIENCE | 2024年 / 126卷 / 03期
关键词
Climate change; crop planning; empirical comparison; machine learning; prediction; rainfall; EMPIRICAL MODE DECOMPOSITION;
D O I
10.18520/cs/v126/i3/360-367
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Due to the changing climate and frequent occurrence of extreme events, farmers face significant challenges. Precise rainfall prediction is necessary for proper crop planning. The presence of nonlinearity and chaotic structure in the historical rainfall series distorts the performances of the usual prediction models. In the present study, algorithms based on complete ensemble empirical mode decomposition with adaptive noise combined with stochastic models like autoregressive integrated moving average and generalized autoregressive conditional heteroscedasticity; machine learning techniques like random forest, artificial neural network, support vector regression and kernel ridge regression (KRR) have been proposed for predicting rainfall series. KRR has been considered to combine predicted intrinsic mode functions and residuals generated by various algorithms to capture the volatility in the series. The proposed algorithms have been applied for predicting rainfall in three selected subdivisions of India, namely, Assam and Meghalaya, Konkan and Goa, and Punjab. An empirical comparison of the proposed algorithms with the existing models revealed that the developed models have outperformed the latter.
引用
收藏
页码:360 / 367
页数:8
相关论文
共 50 条
  • [21] Using Machine Learning Algorithms for Predicting Stroke Disease
    Alyasein, Safa
    Alqaran, Romaisa
    Al-Aiad, Ahmad
    2024 15TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS, ICICS 2024, 2024,
  • [22] Gaining insight into toxicity predicting machine learning algorithms
    Allen, T. E. H.
    Gelzinyte, E.
    Wedlake, A. J.
    Goodman, J. M.
    Gutsell, S.
    Russell, P. J.
    TOXICOLOGY LETTERS, 2019, 314 : S280 - S280
  • [23] Impacts of Feature Selection on Predicting Machine Failures by Machine Learning Algorithms
    Bezerra, Francisco Elanio
    de Oliveira Neto, Geraldo Cardoso
    Cervi, Gabriel Magalhaes
    Mazetto, Rafaella Francesconi
    de Faria, Aline Mariane
    Vido, Marcos
    Lima, Gustavo Araujo
    de Araujo, Sidnei Alves
    Sampaio, Mauro
    Amorim, Marlene
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [24] Predicting global horizontal irradiance of north central region of India via machine learning regressor algorithms
    Gupta, Rahul
    Yadav, Anil Kumar
    Jha, S. K.
    Pathak, Pawan Kumar
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [25] Prediction of rainfall and groundwater using machine learning Algorithms for Nagpur division
    Jibhakate, Tulshidas M.
    Katpatal, Yashwant B.
    MAUSAM, 2024, 75 (03): : 729 - 746
  • [26] A Comparison of Machine Learning Models for Predicting Rainfall in Urban Metropolitan Cities
    Kumar, Vijendra
    Kedam, Naresh
    Sharma, Kul Vaibhav
    Khedher, Khaled Mohamed
    Alluqmani, Ayed Eid
    SUSTAINABILITY, 2023, 15 (18)
  • [27] Predicting Health Material Accessibility: Development of Machine Learning Algorithms
    Ji, Meng
    Liu, Yanmeng
    Hao, Tianyong
    JMIR MEDICAL INFORMATICS, 2021, 9 (09)
  • [28] Predicting Chronic Kidney Disease Using Machine Learning Algorithms
    Farjana, Afia
    Liza, Fatema Tabassum
    Pandit, Parth Pratim
    Das, Madhab Chandra
    Hasan, Mahadi
    Tabassum, Fariha
    Hossen, Md. Helal
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 1267 - 1271
  • [29] Predicting cash holdings using supervised machine learning algorithms
    Şirin Özlem
    Omer Faruk Tan
    Financial Innovation, 8
  • [30] A comparative analysis of machine learning algorithms for predicting wave runup
    Ahmet Durap
    Anthropocene Coasts, 6