Bayesian Deep Learning for Hyperspectral Image Classification With Low Uncertainty

被引:0
|
作者
He, Xin [1 ]
Chen, Yushi [1 ]
Huang, Lingbo [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
关键词
Bayesian neural network; deep learning; hyperspectral image (HSI) classification; uncertainty estimation; FEATURE-EXTRACTION; SPATIAL CLASSIFICATION; CNN;
D O I
10.1109/TGRS.2023.3257865
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, deep learning models have been widely used for hyperspectral image (HSI) classification, and most of the existing deep-learning-based methods merely focused on high classification accuracy. However, in real applications, classification with low uncertainty matters as much as accurate classification. Unfortunately, the existing methods fail to consider uncertainty. To tackle this challenge, for the first time, Bayesian deep learning (BDL) is investigated to analyze the model uncertainty for HSI classification. Specifically, first, at the feature extraction (FE) stage, an HSI classification framework based on BDL, which contains two Bayesian Gabor layers and a global pooling layer (i.e., BDL-G222), is proposed. In BDL-G222, parameters in Gabor layers are sampled from the Gaussian distribution. The proposed BDL-G222 not only provides the uncertainty estimation but also strengthens the structure characteristic (i.e., texture) of HSI. Second, to model the uncertainty at the final classification stage, BDL-G222 is combined with a Bayesian fully connected layer (BFL) (i.e., BDL-G222-BFL), where the parameters' distribution is adjusted adaptively. In the proposed BDL-G222-BFL, the uncertainty at FE and classification stages is captured, and a whole uncertainty estimation framework is established. Experimental results on the three public HSI datasets demonstrate the superiority in both accuracy and uncertainty. The proposed BDL-based methods pioneer a new direction and provide useful inspiration and experience for practical applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Classification of Hyperspectral Image Based on Principal Component Analysis and Deep Learning
    Sun, Qiaoqiao
    Liu, Xuefeng
    Fu, Min
    PROCEEDINGS OF 2017 IEEE 7TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC), 2017, : 356 - 359
  • [42] HYPER-VOXEL BASED DEEP LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Mughees, Atif
    Tao, Linmi
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 840 - 844
  • [43] Deep transformer and few-shot learning for hyperspectral image classification
    Ran, Qiong
    Zhou, Yonghao
    Hong, Danfeng
    Bi, Meiqiao
    Ni, Li
    Li, Xuan
    Ahmad, Muhammad
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1323 - 1336
  • [44] HYPERSPECTRAL IMAGE CLASSIFICATION USING RANDOM FOREST AND DEEP LEARNING ALGORITHMS
    Rissati, J., V
    Molina, P. C.
    Anjos, C. S.
    2020 IEEE LATIN AMERICAN GRSS & ISPRS REMOTE SENSING CONFERENCE (LAGIRS), 2020, : 132 - 132
  • [45] Spectral-Spatial Hyperspectral Image Classification using Deep Learning
    Singh, Simranjit
    Kasana, Singara Singh
    PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 411 - 417
  • [46] HYPERSPECTRAL IMAGE CLASSIFICATION VIA SHAPE-ADAPTIVE DEEP LEARNING
    Mughees, Atif
    Ali, Ahmad
    Tao, Linmi
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 375 - 379
  • [47] Conditional Random Field and Deep Feature Learning for Hyperspectral Image Classification
    Alam, Fahim Irfan
    Zhou, Jun
    Liew, Alan Wee-Chung
    Jia, Xiuping
    Chanussot, Jocelyn
    Gao, Yongsheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (03): : 1612 - 1628
  • [48] Dimensionally Reduced Features for Hyperspectral Image Classification Using Deep Learning
    Charmisha, K. S.
    Sowmya, V.
    Soman, K. P.
    ICCCE 2018, 2019, 500 : 171 - 179
  • [49] A novel hyperspectral image classification iteration method based on deep learning
    Liu, Qian
    Jin, Peiyang
    Zhu, Botao
    Mao, Keming
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND INTELLIGENT CONTROL (IPIC 2021), 2021, 11928
  • [50] MugNet: Deep learning for hyperspectral image classification using limited samples
    Pan, Bin
    Shi, Zhenwei
    Xu, Xia
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 145 : 108 - 119