Bayesian Deep Learning for Hyperspectral Image Classification With Low Uncertainty

被引:0
|
作者
He, Xin [1 ]
Chen, Yushi [1 ]
Huang, Lingbo [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
关键词
Bayesian neural network; deep learning; hyperspectral image (HSI) classification; uncertainty estimation; FEATURE-EXTRACTION; SPATIAL CLASSIFICATION; CNN;
D O I
10.1109/TGRS.2023.3257865
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, deep learning models have been widely used for hyperspectral image (HSI) classification, and most of the existing deep-learning-based methods merely focused on high classification accuracy. However, in real applications, classification with low uncertainty matters as much as accurate classification. Unfortunately, the existing methods fail to consider uncertainty. To tackle this challenge, for the first time, Bayesian deep learning (BDL) is investigated to analyze the model uncertainty for HSI classification. Specifically, first, at the feature extraction (FE) stage, an HSI classification framework based on BDL, which contains two Bayesian Gabor layers and a global pooling layer (i.e., BDL-G222), is proposed. In BDL-G222, parameters in Gabor layers are sampled from the Gaussian distribution. The proposed BDL-G222 not only provides the uncertainty estimation but also strengthens the structure characteristic (i.e., texture) of HSI. Second, to model the uncertainty at the final classification stage, BDL-G222 is combined with a Bayesian fully connected layer (BFL) (i.e., BDL-G222-BFL), where the parameters' distribution is adjusted adaptively. In the proposed BDL-G222-BFL, the uncertainty at FE and classification stages is captured, and a whole uncertainty estimation framework is established. Experimental results on the three public HSI datasets demonstrate the superiority in both accuracy and uncertainty. The proposed BDL-based methods pioneer a new direction and provide useful inspiration and experience for practical applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Deep Residual Prototype Learning Network for Hyperspectral Image Classification
    Liu, Yu
    Su, Mingrui
    Liu, Lu
    Li, Chunchao
    Peng, Yuanxi
    Hou, Jing
    Jiang, Tian
    SECOND TARGET RECOGNITION AND ARTIFICIAL INTELLIGENCE SUMMIT FORUM, 2020, 11427
  • [32] Efficient Deep Learning of Nonlocal Features for Hyperspectral Image Classification
    Shen, Yu
    Zhu, Sijie
    Chen, Chen
    Du, Qian
    Xiao, Liang
    Chen, Jianyu
    Pan, Delu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07): : 6029 - 6043
  • [33] Multitask Deep Learning With Spectral Knowledge for Hyperspectral Image Classification
    Liu, Shengjie
    Shi, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (12) : 2110 - 2114
  • [34] HYPERSPECTRAL IMAGE CLASSIFICATION USING UNCERTAINTY AND DIVERSITY BASED ACTIVE LEARNING
    Patel U.
    Dave H.
    Patel V.
    Scalable Computing, 2021, 22 (03): : 283 - 293
  • [35] Uncertainty Heuristics of Large Margin Active Learning for Hyperspectral Image Classification
    Ben Slimene, Ines
    Chehata, Nesrine
    Farah, Imed Riadh
    Lagacherie, Philippe
    2014 FIRST INTERNATIONAL IMAGE PROCESSING, APPLICATIONS AND SYSTEMS CONFERENCE (IPAS), 2014,
  • [36] HYPERSPECTRAL IMAGE CLASSIFICATION USING UNCERTAINTY AND DIVERSITY BASED ACTIVE LEARNING
    Patel, Usha
    Dave, Hardik
    Patel, Vibha
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2021, 22 (03): : 283 - 293
  • [37] Active-Learning-Incorporated Deep Transfer Learning for Hyperspectral Image Classification
    Lin, Jianzhe
    Zhao, Liang
    Li, Shuying
    Ward, Rabab
    Wang, Z. Jane
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (11) : 4048 - 4062
  • [38] Bayesian deep learning for reliable oral cancer image classification
    Song, Bofan
    Sunny, Sumsum
    LI, Shaobai
    Gurushanth, Keerthi
    Mendonca, Pramila
    Mukhia, Nirza
    Patrick, Sanjana
    Gurudath, Shubha
    Raghavan, Subhashini
    Tsusennaro, Imchen
    Leivon, Shirley T.
    Kolur, Trupti
    Shetty, Vivek
    Bushan, Vidya R.
    Ramesh, Rohan
    Peterson, Tyler
    Pillai, Vijay
    Wilder-smith, Petra
    Sigamani, Alben
    Suresh, Amritha
    Kuriakose, Moni Abraham
    Birur, Praveen
    Liang, Rongguang
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (10): : 6422 - 6430
  • [39] Diagonalized Low-Rank Learning for Hyperspectral Image Classification
    Xing, Changda
    Wang, Meiling
    Wang, Zhisheng
    Duan, Chaowei
    Liu, Yiliu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [40] DEEP ADVERSARIAL ACTIVE LEARNING WITH MODEL UNCERTAINTY FOR IMAGE CLASSIFICATION
    Zhu, Zheng
    Wang, Hongxing
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1711 - 1715