Life cycle cost and environmental assessment of CO2 utilization in the beverage industry: A natural gas-fired power plant equipped with post-combustion CO2 capture

被引:9
|
作者
Hosseini, Seyed Mohsen [1 ]
Aslani, Alireza [1 ,2 ]
Kasaeian, Alibakhsh [1 ]
机构
[1] Univ Tehran, Fac New Sci & Technol, Dept Renewable Energies & Environm, Tehran, Iran
[2] Univ Tehran, Fac New Sci & Technol, North Kargar St, Tehran, Iran
关键词
Life cycle assessment; Natural gas power plant; CO2 capture and utilization; Soft drinks; CARBON-DIOXIDE; STORAGE;
D O I
10.1016/j.egyr.2022.11.200
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Besat is a natural gas-fired steam-turbine power plant in Tehran, Iran's only power station equipped with a monoethanolamine-based post-combustion CO2 capture unit (PCCU). The PCCU operates at a low recovery rate of 4.7% and produces 58 t-CO2/day. Captured CO2 is encapsulated and sold to beverage companies for carbonated soft drink production. Before developing this CO2 capture and utilization (CCU) route, a beverage company like ZamZam produced CO2 on-site, capturing CO2 from flue gas of diesel-fired boilers using a 95%-efficient absorption-refrigeration unit. This paper conducts an attributional, comparative life-cycle assessment/costing of applying the CCU technology to supply the beverage industry with CO2. ReCiPe, cumulative energy demand, and AWARE impact assessment methods are adopted to assess changes in the life-cycle economic, energy, and environmental impacts of electricity, liquid CO2, and carbonated water supply chains with the CCU route. As per findings, the CCU route significantly improves the sustainability profile of liquid CO2 supply for carbonated water production. Compared to on-site production, the CCU route reduces the average economic, energy, and environmental impacts of liquid CO2 supply by 55, 44, and 62%, respectively. However, the figures for carbonated-water production are reduced by only 10.1, 0.85, and 0.77%, respectively, since associated impacts primarily result from citric acid and polyethylene terephthalate value chains rather than liquid CO2. The CCU route, in comparison, increases most environmental burdens of electricity generation. With an efficiency of 4.7%, the PCCU reduces the global warming potential of electricity generation by 6.22% while increasing average toxicity-and eutrophication-related impacts by 55 and 30%, respectively, and production costs by 8%.
引用
收藏
页码:414 / 436
页数:23
相关论文
共 50 条
  • [31] Thermodynamic analysis of combined cycle gas turbine power plant with post-combustion CO2 capture and exhaust gas recirculation
    Canepa, Roberto
    Wang, Meihong
    Biliyok, Chechet
    Satta, Antonio
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2013, 227 (E2) : 89 - 105
  • [32] Comparative potential of natural gas, coal and biomass fired power plant with post - combustion CO2 capture and compression
    Ali, Usman
    Font-Palma, Carolina
    Akram, Muhammad
    Agbonghae, Elvis O.
    Ingham, Derek B.
    Pourkashanian, Mohamed
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 63 : 184 - 193
  • [33] Assessment of chemical absorption/adsorption for post-combustion CO2 capture from Natural Gas Combined Cycle (NGCC) power plants
    Cormos, Calin-Cristian
    APPLIED THERMAL ENGINEERING, 2015, 82 : 120 - 128
  • [34] Hybrid membrane process for post-combustion CO2 capture from coal-fired power plant
    Ren L.-X.
    Chang F.-L.
    Kang D.-Y.
    Chen C.-L.
    Journal of Membrane Science, 2021, 603
  • [35] Inherent CO2 capture using chemical looping combustion in a natural gas fired power cycle
    Brandvoll, O
    Bolland, O
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2004, 126 (02): : 316 - 321
  • [36] Reduction of efficiency penalty for a natural gas combined cycle power plant with post-combustion CO2 capture: Integration of liquid natural gas cold energy
    Bao, Junjiang
    Zhang, Lei
    Song, Chunxiao
    Zhang, Ning
    Guo, Minggang
    Zhang, Xiaopeng
    ENERGY CONVERSION AND MANAGEMENT, 2019, 198
  • [37] Performance viability of a natural gas fired combined cycle power plant integrated with post-combustion CO2 capture at part-load and temporary non-capture operations
    Rezazadeh, Fatemeh
    Gale, William F.
    Hughes, Kevin J.
    Pourkashanian, Mohamed
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 39 : 397 - 406
  • [38] SOLID SORBENT POST-COMBUSTION CO2 CAPTURE IN SUBCRITICAL PC POWER PLANT
    Chen, Qin
    Rao, Ashok
    Samuelsen, Scott
    PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2015, VOL 1, 2016,
  • [39] China's first pilot-scale demonstration of post-combustion CO2 capture from a natural-gas-fired power plant
    Gao, Shiwang
    Liu, Lianbo
    Frank, Alix
    Wang, Jinyi
    Chris, McLarnon
    Guo, Dongfang
    Keith, Croto
    Niu, Hongwei
    Joanna, Duncan
    Wang, Xiaolong
    Wang, Shiqing
    Roberto, Bosco
    Xu, Shisen
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2016, 6 (02): : 178 - 187
  • [40] NATURAL-GAS FIRED COMBINED-CYCLE POWER-PLANT WITH CO2 CAPTURE
    SHAO, YL
    GOLOMB, D
    BROWN, G
    ENERGY CONVERSION AND MANAGEMENT, 1995, 36 (12) : 1115 - 1128