Clock statistics for 1d Schrodinger operators

被引:0
|
作者
Chulaevsky, Victor [1 ]
Nakano, Fumihiko [2 ]
机构
[1] Univ Reims, Dept Math, Reims, France
[2] Tohoku Univ, Math Inst, Tohoku, Japan
基金
英国工程与自然科学研究理事会;
关键词
MATRICES;
D O I
10.1063/5.0160191
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the 1d Schrodinger operators with alloy type random supercritical decaying potential, where the random variables {omega(j)}(j is an element of Z) in the potential are either i.i.d. or more generally ones with exponentially decaying correlations. We prove the convergence to the clock process for the local statistics of eigenvalues. Moreover we prove the strong clock behavior in i.i.d. case.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] POISSON STATISTICS FOR EIGENVALUES OF CONTINUUM RANDOM SCHRODINGER OPERATORS
    Combes, Jean-Michel
    Germinet, Francois
    Klein, Abel
    ANALYSIS & PDE, 2010, 3 (01): : 49 - 80
  • [42] A DEGENERATE EDGE BIFURCATION IN THE 1D LINEARIZED NONLINEAR SCHRODINGER EQUATION
    Coles, Matt
    Gustafson, Stephen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (06) : 2991 - 3009
  • [43] Numerical Characterization of Thresholds for the Focusing 1d Nonlinear Schrodinger Equation
    Musielak, Magdalena M.
    Roudenko, Svetlana
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [44] Exact resolution method for general 1D polynomial Schrodinger equation
    Voros, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (32): : 5993 - 6007
  • [45] Singular spin-flip interactions for the 1D Schrodinger operator
    Kulinskii, V
    Panchenko, D. Yu
    PHYSICA SCRIPTA, 2020, 95 (01)
  • [46] Simultaneous local exact controllability of 1D bilinear Schrodinger equations
    Morancey, Morgan
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03): : 501 - 529
  • [47] KAM tori in 1D random discrete nonlinear Schrodinger model?
    Johansson, M.
    Kopidakis, G.
    Aubry, S.
    EPL, 2010, 91 (05)
  • [48] Global exact controllability of 1D Schrodinger equations with a polarizability term
    Morancey, Morgan
    Nersesyan, Vahagn
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (05) : 425 - 429
  • [49] Observability of a 1D Schrodinger Equation with Time-Varying Boundaries
    Achache, Mahdi
    Hoang, Duc-Trung
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (03) : 1077 - 1100
  • [50] 1D generalized statistics gas: A gauge theory approach
    Rabello, SJB
    PHYSICAL REVIEW LETTERS, 1996, 76 (21) : 4007 - 4009