Clock statistics for 1d Schrodinger operators

被引:0
|
作者
Chulaevsky, Victor [1 ]
Nakano, Fumihiko [2 ]
机构
[1] Univ Reims, Dept Math, Reims, France
[2] Tohoku Univ, Math Inst, Tohoku, Japan
基金
英国工程与自然科学研究理事会;
关键词
MATRICES;
D O I
10.1063/5.0160191
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the 1d Schrodinger operators with alloy type random supercritical decaying potential, where the random variables {omega(j)}(j is an element of Z) in the potential are either i.i.d. or more generally ones with exponentially decaying correlations. We prove the convergence to the clock process for the local statistics of eigenvalues. Moreover we prove the strong clock behavior in i.i.d. case.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Resonances for 1D massless Dirac operators
    Iantchenko, Alexei
    Korotyaev, Evgeny
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) : 3038 - 3066
  • [22] Asymptotics of resonances for 1D Stark operators
    Korotyaev, Evgeny L.
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (05) : 1307 - 1322
  • [23] Asymptotics of resonances for 1D Stark operators
    Evgeny L. Korotyaev
    Letters in Mathematical Physics, 2018, 108 : 1307 - 1322
  • [24] Criteria for Discrete Spectrum of 1D Operators
    Chen, Mu-Fa
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2014, 2 (3-4) : 279 - 309
  • [25] Point Spectrum and SULE for Time-Periodic Perturbations of Discrete 1D Schrodinger Operators with Electric Fields
    de Oliveira, Cesar R.
    Pigossi, Mariane
    JOURNAL OF STATISTICAL PHYSICS, 2018, 173 (01) : 140 - 162
  • [26] STATISTICS OF COUNTERPROPAGATING WAVES IN SUPERRADIATION 1D PROBLEM
    KANEVA, EN
    OPTIKA I SPEKTROSKOPIYA, 1989, 67 (01): : 127 - 131
  • [27] GLOBAL CONTROLLABILITY OF THE 1D SCHRODINGER-POISSON EQUATION
    De Leo, Mariano
    Fernandez de la Vega, Constanza Sanchez
    Rial, Diego
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2013, 54 (01): : 43 - 54
  • [28] Bilinear control of high frequencies for a 1D Schrodinger equation
    Beauchard, K.
    Laurent, C.
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2017, 29 (02)
  • [29] Exact solutions of the 1D Schrodinger equation with the Mathieu potential
    Sun, Guo-Hua
    Chen, Chang-Yuan
    Taud, Hind
    Yanez-Marquez, C.
    Dong, Shi-Hai
    PHYSICS LETTERS A, 2020, 384 (19)
  • [30] Uniqueness of 1D Generalized Bi-Schrodinger Flow
    Onodera, Eiji
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)