UNCERTAINTY PRINCIPLES FOR THE q-HANKEL-STOCKWELL TRANSFORM

被引:0
|
作者
Brahim, Kamel [1 ,2 ]
Ben Elmonser, Hedi [3 ,4 ]
机构
[1] Univ Bisha, Coll Sci, Dept Math, Bisha, Saudi Arabia
[2] Univ Tunis El Manar, Fac Sci Tunis, Tunis, Tunisia
[3] Majmaah Univ, Coll Sci Al Zul, Dept Math, Al Majmaah 11952, Saudi Arabia
[4] Natl Inst Technol & Appl Sci, Dept Math, Tunis, Tunisia
关键词
FOURIER;
D O I
10.1007/s11253-023-02244-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the q-Jackson integral and some elements of the q-harmonic analysis associated with the q-Hankel transform, we introduce and study a q-analog of the Hankel-Stockwell transform. We present some properties from harmonic analysis (Plancherel formula, inversion formula, reproducing kernel, etc.). Furthermore, we establish a version of Heisenberg's uncertainty principles. Finally, we study the q-Hankel-Stockwell transform on a subset of finite measure.
引用
收藏
页码:1016 / 1033
页数:18
相关论文
共 50 条
  • [42] Stockwell transform for Boehmians
    Roopkumar, R.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (04) : 251 - 262
  • [43] Convolution based quadratic-phase Stockwell transform: theory and uncertainty relations
    Dar, Aamir H.
    Bhat, M. Younus
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 20117 - 20147
  • [44] Quaternionic Stockwell transform
    Akila, L.
    Roopkumar, R.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (06) : 484 - 504
  • [45] Convolution based quadratic-phase Stockwell transform: theory and uncertainty relations
    Aamir H. Dar
    M. Younus Bhat
    Multimedia Tools and Applications, 2024, 83 : 20117 - 20147
  • [46] Quantitative uncertainty principles for the Weinstein transform
    A. Abouelaz
    A. Achak
    R. Daher
    N. Safouane
    Boletín de la Sociedad Matemática Mexicana, 2019, 25 : 375 - 383
  • [47] Quantitative uncertainty principles for the Weinstein transform
    Abouelaz, A.
    Achak, A.
    Daher, R.
    Safouane, N.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (02): : 375 - 383
  • [48] Hypergeometric Gabor transform and uncertainty principles
    Mejjaoli, Hatem
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (03):
  • [49] Uncertainty Principles for the Clifford–Fourier Transform
    Jamel El Kamel
    Rim Jday
    Advances in Applied Clifford Algebras, 2017, 27 : 2429 - 2443
  • [50] Uncertainty Principles for Linear Canonical Transform
    Zhao, Juan
    Tao, Ran
    Li, Yan-Lei
    Wang, Yue
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (07) : 2856 - 2858