UNCERTAINTY PRINCIPLES FOR THE q-HANKEL-STOCKWELL TRANSFORM

被引:0
|
作者
Brahim, Kamel [1 ,2 ]
Ben Elmonser, Hedi [3 ,4 ]
机构
[1] Univ Bisha, Coll Sci, Dept Math, Bisha, Saudi Arabia
[2] Univ Tunis El Manar, Fac Sci Tunis, Tunis, Tunisia
[3] Majmaah Univ, Coll Sci Al Zul, Dept Math, Al Majmaah 11952, Saudi Arabia
[4] Natl Inst Technol & Appl Sci, Dept Math, Tunis, Tunisia
关键词
FOURIER;
D O I
10.1007/s11253-023-02244-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the q-Jackson integral and some elements of the q-harmonic analysis associated with the q-Hankel transform, we introduce and study a q-analog of the Hankel-Stockwell transform. We present some properties from harmonic analysis (Plancherel formula, inversion formula, reproducing kernel, etc.). Furthermore, we establish a version of Heisenberg's uncertainty principles. Finally, we study the q-Hankel-Stockwell transform on a subset of finite measure.
引用
收藏
页码:1016 / 1033
页数:18
相关论文
共 50 条
  • [31] Logarithmic uncertainty principle for the Hankel transform
    Omri, S.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (09) : 655 - 670
  • [32] Local uncertainty principle for the Hankel transform
    Omri, Slim
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (09) : 703 - 712
  • [33] UNCERTAINTY PRINCIPLES FOR THE q-BESSEL WINDOWED TRANSFORM AND LOCALIZATION OPERATORS
    Sraieb N.
    Journal of Mathematical Sciences, 2023, 271 (4) : 434 - 457
  • [34] A variation on uncertainty principles for the generalized q-Bessel Fourier transform
    Hleili, Manel
    Nefzi, Bochra
    Bsaissa, Anis
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 440 (02) : 823 - 832
  • [35] Hankel Transform of (q; r)-Dowling Numbers
    Corcino, Roberto B.
    Latayada, Mary Joy R.
    Vega, Mary Ann Ritzell P.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (02): : 279 - 293
  • [36] Uncertainty principles for the Cherednik transform
    Daher, R.
    Hamad, S. L.
    Kawazoe, T.
    Shimeno, N.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (03): : 429 - 436
  • [37] Uncertainty principles for the weinstein transform
    Mejjaoli, Hatem
    Salhi, Makren
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (04) : 941 - 974
  • [38] Uncertainty principles for the weinstein transform
    Hatem Mejjaoli
    Makren Salhi
    Czechoslovak Mathematical Journal, 2011, 61 : 941 - 974
  • [39] Uncertainty principles for the Cherednik transform
    R DAHER
    S L HAMAD
    T KAWAZOE
    N SHIMENO
    Proceedings - Mathematical Sciences, 2012, 122 : 429 - 436
  • [40] UNCERTAINTY PRINCIPLES IN TERM OF SUPPORTS IN HANKEL WAVELET SETTING
    Hkimi, S.
    Omri, S.
    OPERATORS AND MATRICES, 2021, 15 (02): : 755 - 776