On invariant von Neumann subalgebras rigidity property

被引:1
|
作者
Amrutam, Tattwamasi [1 ]
Jiang, Yongle [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, POB 653, IL-8410501 Beer Sheva, Israel
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
以色列科学基金会;
关键词
Invariant von Neumann subalgebras; Hyperbolic groups; FirstL2-Betti number; II1; FACTORS; GALOIS CORRESPONDENCE; STRUCTURAL THEORY; ALGEBRAS;
D O I
10.1016/j.jfa.2022.109804
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a countable discrete group Gamma satisfies the invariant von Neumann subalgebras rigidity (ISR) property if every Gamma-invariant von Neumann subalgebra M in L(Gamma) is of the form L(Lambda) for some normal subgroup Lambda d Gamma. We show many "negatively curved" groups, including all torsion free non -amenable hyperbolic groups and torsion free groups with positive first L2-Betti number under a mild assumption, and certain finite direct product of them have this property. We also discuss whether the torsion-free assumption can be relaxed.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条