ACSN: Attention capsule sampling network for diagnosing COVID-19 based on chest CT scans

被引:9
|
作者
Wen, Cuihong [1 ,5 ]
Liu, Shaowu [1 ]
Liu, Shuai [1 ,2 ,3 ]
Heidari, Ali Asghar [4 ]
Hijji, Mohammad [6 ]
Zarco, Carmen [7 ]
Muhammad, Khan [8 ,9 ]
机构
[1] Hunan Normal Univ, Coll Informat Sci & Engn, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Sch Educ Sci, Changsha 410081, Peoples R China
[3] Hunan Normal Univ, Key Lab Big Data Res & Applicat Basic Educ, Changsha 410081, Peoples R China
[4] Univ Tehran, Coll Engn, Sch Surveying & Geospatial Engn, Tehran 1439957131, Iran
[5] Peking Univ, Coll Engn, Dept Adv Mfg & Robot, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
[6] Univ Tabuk, Fac Comp & Informat Technol FCIT, Tabuk 47711, Saudi Arabia
[7] Univ Granada UGR, Andalusian Res Inst Data Sci & Computat Intelligen, Granada, Spain
[8] Sungkyunkwan Univ, Coll Comp & Informat, Sch Convergence, Dept Appl AI,Visual Analyt Knowledge Lab VIS2KNOW, Seoul 03063, South Korea
[9] Sungkyunkwan Univ, Coll Comp & Informat, Seoul 03063, South Korea
基金
中国国家自然科学基金;
关键词
COVID-19; recognition; Capsule network; Lung infections; Chest CT scan; Deep learning; Feature sampling; PNEUMONIA; FRAMEWORK;
D O I
10.1016/j.compbiomed.2022.106338
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Automated diagnostic techniques based on computed tomography (CT) scans of the chest for the coronavirus disease (COVID-19) help physicians detect suspected cases rapidly and precisely, which is critical in providing timely medical treatment and preventing the spread of epidemic outbreaks. Existing capsule networks have played a significant role in automatic COVID-19 detection systems based on small datasets. However, extracting key slices is difficult because CT scans typically show many scattered lesion sections. In addition, existing max pooling sampling methods cannot effectively fuse the features from multiple regions. Therefore, in this study, we propose an attention capsule sampling network (ACSN) to detect COVID-19 based on chest CT scans. A key slices enhancement method is used to obtain critical information from a large number of slices by applying attention enhancement to key slices. Then, the lost active and background features are retained by integrating two types of sampling. The results of experiments on an open dataset of 35,000 slices show that the proposed ACSN achieve high performance compared with state-of-the-art models and exhibits 96.3% accuracy, 98.8% sensitivity, 93.8% specificity, and 98.3% area under the receiver operating characteristic curve.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [21] AI detection of mild COVID-19 pneumonia from chest CT scans
    Yao, Jin-Cao
    Wang, Tao
    Hou, Guang-Hua
    Ou, Di
    Li, Wei
    Zhu, Qiao-Dan
    Chen, Wen-Cong
    Yang, Chen
    Wang, Li-Jing
    Wang, Li-Ping
    Fan, Lin-Yin
    Shi, Kai-Yuan
    Zhang, Jie
    Xu, Dong
    Li, Ya-Qing
    EUROPEAN RADIOLOGY, 2021, 31 (09) : 7192 - 7201
  • [22] AI detection of mild COVID-19 pneumonia from chest CT scans
    Jin-Cao Yao
    Tao Wang
    Guang-Hua Hou
    Di Ou
    Wei Li
    Qiao-Dan Zhu
    Wen-Cong Chen
    Chen Yang
    Li-Jing Wang
    Li-Ping Wang
    Lin-Yin Fan
    Kai-Yuan Shi
    Jie Zhang
    Dong Xu
    Ya-Qing Li
    European Radiology, 2021, 31 : 7192 - 7201
  • [23] Incidental cardiovascular findings on chest CT scans requested for suspected COVID-19
    Caldas dos Reis, Jose Maciel
    Melo, Glauco dos Santos
    de Oliveira, Murilo Vasconcelos
    Fernandez, Mariana Morgado
    Meireles Fernandes da Silva, Tereza Maria
    da Silva Ferreira, Hugo Luis
    de Andrade, Mariseth Carvalho
    JORNAL VASCULAR BRASILEIRO, 2021, 20
  • [24] Residual Attention Deep SVDD for COVID-19 Diagnosis Using CT Scans
    Alhadad, Akram Ali
    Tarawneh, Omar
    Mostafa, Reham R.
    El-Bakry, Hazem M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 3333 - 3350
  • [25] Deep transfer learning based classification model for covid-19 using chest CT-scans
    Lahsaini, Ilyas
    El Habib Daho, Mostafa
    Chikh, Mohamed Amine
    PATTERN RECOGNITION LETTERS, 2021, 152 : 1 - 7
  • [26] BAG OF TRICKS OF HYBRID NETWORK FOR COVID-19 DETECTION OF CT SCANS
    Hsu, Chih-Chung
    Jian, Chih-Yu
    Lee, Chia-Ming
    Tsai, Chi-Han
    Tai, Shen-Chieh
    2023 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW, 2023,
  • [27] A depthwise separable dense convolutional network with convolution block attention module for COVID-19 diagnosis on CT scans
    Li, Qian
    Ning, Jiangbo
    Yuan, Jianping
    Xiao, Ling
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [28] Robust framework for COVID-19 identication from a multicenter dataset of chest CT scans
    Khademi, Sadaf
    Heidarian, Shahin
    Afshar, Parnian
    Enshaei, Nastaran
    Naderkhani, Farnoosh
    Rafiee, Moezedin Javad
    Oikonomou, Anastasia
    Shafiee, Akbar
    Fard, Faranak Babaki
    Plataniotis, Konstantinos N.
    Mohammadi, Arash
    PLOS ONE, 2023, 18 (03):
  • [29] Deep neural network to detect COVID-19: one architecture for both CT Scans and Chest X-rays
    Mukherjee, Himadri
    Ghosh, Subhankar
    Dhar, Ankita
    Obaidullah, Sk Md
    Santosh, K. C.
    Roy, Kaushik
    APPLIED INTELLIGENCE, 2021, 51 (05) : 2777 - 2789
  • [30] Densely attention mechanism based network for COVID-19 detection in chest X-rays
    Ullah, Zahid
    Usman, Muhammad
    Latif, Siddique
    Gwak, Jeonghwan
    SCIENTIFIC REPORTS, 2023, 13 (01)