COVID-19 is an infectious and contagious virus. As of this writing, more than 160 million people have been infected since its emergence, including more than 125,0 0 0 in Algeria. In this work, We first collected a dataset of 4986 COVID and non-COVID images confirmed by RT-PCR tests at Tlemcen hospital in Algeria. Then we performed a transfer learning on deep learning models that got the best results on the ImageNet dataset, such as DenseNet121, DenseNet201, VGG16, VGG19, Inception Resnet-V2, and Xception, in order to conduct a comparative study. Therefore, We have proposed an explainable model based on the DenseNet201 architecture and the GradCam explanation algorithm to detect COVID-19 in chest CT images and explain the output decision. Experiments have shown promising results and proven that the introduced model can be beneficial for diagnosing and following up patients with COVID-19. (c) 2021 Elsevier B.V. All rights reserved.