FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS FOR COINTEGRATED FUNCTIONAL TIME SERIES

被引:3
|
作者
Seo, Won-Ki [1 ,2 ]
机构
[1] Univ Sydney, Sch Econ, Sydney, Australia
[2] Univ Sydney, Level 5,Social Sci Bldg, Sydney, NSW 2006, Australia
关键词
Cointegration; functional principal component analysis; functional time series; unit roots; STATIONARITY; REGRESSION;
D O I
10.1111/jtsa.12707
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Functional principal component analysis (FPCA) has played an important role in the development of functional time series analysis. This note investigates how FPCA can be used to analyze cointegrated functional time series and proposes a modification of FPCA as a novel statistical tool. Our modified FPCA not only provides an asymptotically more efficient estimator of the cointegrating vectors, but also leads to novel FPCA-based tests for examining essential properties of cointegrated functional time series.
引用
下载
收藏
页码:320 / 330
页数:11
相关论文
共 50 条
  • [1] Functional principal component analysis of financial time series
    Ingrassia, S
    Costanzo, GD
    New Developments in Classification and Data Analysis, 2005, : 351 - 358
  • [2] Graphical Principal Component Analysis of Multivariate Functional Time Series
    Tan, Jianbin
    Liang, Decai
    Guan, Yongtao
    Huang, Hui
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024,
  • [3] Principal components analysis of cointegrated time series
    Harris, D
    ECONOMETRIC THEORY, 1997, 13 (04) : 529 - 557
  • [4] Functional Principal Component Analysis: A Robust Method for Time-Series Phenotypic Data
    Yu, Yunqing
    PLANT PHYSIOLOGY, 2020, 183 (04) : 1422 - 1423
  • [5] Analysis of principal functional components in economic time series
    Chavez Chong, Cristina O.
    Sanchez Garcia, Jesus E.
    DelaCerda Gastelum, Jose
    GECONTEC-REVISTA INTERNACIONAL DE GESTION DEL CONOCIMIENTO Y LA TECNOLOGIA, 2015, 3 (02): : 13 - 25
  • [6] Functional principal component analysis for the explorative analysis of multisitemultivariate air pollution time series with long gaps
    Ruggieri, Mariantonietta
    Plaia, Antonella
    Di Salvo, Francesca
    Agro, Gianna
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (04) : 795 - 807
  • [7] Clustering of Remotely Sensed Time Series using Functional Principal Component Analysis to Monitor Crops
    Coviello, Luca
    Martini, Francesco Maria
    Cesaretti, Lorenzo
    Pesaresi, Simone
    Solfanelli, Francesco
    Mancini, Adriano
    2022 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY (METROAGRIFOR), 2022, : 141 - 145
  • [8] Cramer-Karhunen-Loeve representation and harmonic principal component analysis of functional time series
    Panaretos, Victor M.
    Tavakoli, Shahin
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (07) : 2779 - 2807
  • [9] Dynamic principal component regression for forecasting functional time series in a group structure
    Shang, Han Lin
    SCANDINAVIAN ACTUARIAL JOURNAL, 2020, 2020 (04) : 307 - 322
  • [10] Supervised functional principal component analysis
    Nie, Yunlong
    Wang, Liangliang
    Liu, Baisen
    Cao, Jiguo
    STATISTICS AND COMPUTING, 2018, 28 (03) : 713 - 723