Modeling count time series: a comparative case study

被引:0
|
作者
Maia, Gisele O. [1 ]
Franco, Glaura C. [1 ]
Santos, Thiago R. [1 ]
Camara, Ana Julia A. [2 ]
机构
[1] Univ Fed Minas Gerais UFMG, Dept Estat, Belo Horizonte, Brazil
[2] Univ Fed Espirito Santo UFES, Dept Estat, Espirito Santo, Brazil
来源
SIGMAE | 2024年 / 13卷 / 01期
关键词
Observation-driven model; Parameter-driven model; GAM-ARMA; NGSSEML; count data; DRIVEN; REGRESSION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents an application for counting data, where the observation-driven and parameter -driven models are compared. To this purpose, the Generalized Additive Autoregressive Moving Average (GAM -ARMA) and Non-Gaussian State Space with Exact Marginal Likelihood (NGSSEML) models are used. Model parameters are estimated using the maximum likelihood method. The ability of the procedure to model and forecast real data is presented for the number of chronic obstructive disease (COPD) cases.
引用
下载
收藏
页码:13 / 23
页数:11
相关论文
共 50 条
  • [21] Zero-modified count time series modeling with an application to influenza cases
    Andrade, Marinho G.
    Conceicao, Katiane S.
    Ravishanker, Nalini
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2024, 108 (03) : 611 - 637
  • [22] Introducing Hybrid Modeling with Time-Series-Transformers: A Comparative Study of Series and Parallel Approach in Batch Crystallization
    Sitapure, Niranjan
    Kwon, Joseph Sang-Il
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (49) : 21278 - 21291
  • [23] Nonparametric forecasting in time series -: A comparative study
    Vilar-Fernandez, Juan M.
    Cao, Ricardo
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2007, 36 (02) : 311 - 334
  • [24] Biclustering fMRI time series: a comparative study
    Castanho, Eduardo N.
    Aidos, Helena
    Madeira, Sara C.
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [25] Bayesian comparative study on binary time series
    Paul, Erina
    Maity, Arnab Kumar
    Maiti, Raju
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (14) : 2811 - 2826
  • [26] A Comparative Study of Visualizations for Multiple Time Series
    Franke, Max
    Knabben, Moritz
    Lang, Julian
    Koch, Steffen
    Blascheck, Tanja
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (IVAPP), VOL 3, 2022, : 103 - 112
  • [27] Biclustering fMRI time series: a comparative study
    Eduardo N. Castanho
    Helena Aidos
    Sara C. Madeira
    BMC Bioinformatics, 23
  • [28] A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction
    Ho, SL
    Xie, M
    Goh, TN
    COMPUTERS & INDUSTRIAL ENGINEERING, 2002, 42 (2-4) : 371 - 375
  • [29] Latent Gaussian Count Time Series
    Jia, Yisu
    Kechagias, Stefanos
    Livsey, James
    Lund, Robert
    Pipiras, Vladas
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (541) : 596 - 606
  • [30] Stationary count time series models
    Weiss, Christian H.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (01)