Latent Gaussian Count Time Series

被引:6
|
作者
Jia, Yisu [1 ]
Kechagias, Stefanos [2 ]
Livsey, James [3 ]
Lund, Robert [4 ]
Pipiras, Vladas [5 ]
机构
[1] Univ North Florida, Dept Math & Stat, 1 UNF Dr, Jacksonville, FL 32224 USA
[2] SAS Inst, Cary, NC USA
[3] US Census Bur, Washington, DC USA
[4] Univ Calif Santa Cruz, Dept Stat, Santa Cruz, CA 95064 USA
[5] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27515 USA
关键词
Count distributions; Hermite expansions; Likelihood estimation; Particle filtering; Sequential Monte Carlo; State-space models; SPECIFIED MARGINALS; COPULA MODELS; DISTRIBUTIONS; OPTIMIZATION; POISSON;
D O I
10.1080/01621459.2021.1944874
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article develops the theory and methods for modeling a stationary count time series via Gaussian transformations. The techniques use a latent Gaussian process and a distributional transformation to construct stationary series with very flexible correlation features that can have any prespecified marginal distribution, including the classical Poisson, generalized Poisson, negative binomial, and binomial structures. Gaussian pseudo-likelihood and implied Yule-Walker estimation paradigms, based on the autocovariance function of the count series, are developed via a new Hermite expansion. Particle filtering and sequential Monte Carlo methods are used to conduct likelihood estimation. Connections to state space models are made. Our estimation approaches are evaluated in a simulation study and the methods are used to analyze a count series of weekly retail sales. Supplementary materials for this article are available online.
引用
收藏
页码:596 / 606
页数:11
相关论文
共 50 条
  • [1] Zero-inflated count time series models using Gaussian copula
    Alqawba, Mohammed
    Diawara, Norou
    Chaganty, N. Rao
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2019, 38 (03): : 342 - 357
  • [2] Testing for presence of a latent process in count series
    Drescher, Daniel
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2008, 78 (07) : 595 - 607
  • [3] Seasonal count time series
    KONG, J. I. A. J. I. E.
    LUND, R. O. B. E. R. T.
    JOURNAL OF TIME SERIES ANALYSIS, 2023, 44 (01) : 93 - 124
  • [4] On count time series prediction
    Christou, Vasiliki
    Fokianos, Konstantinos
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (02) : 357 - 373
  • [5] Stationary count time series models
    Weiss, Christian H.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (01)
  • [6] INARMA Modeling of Count Time Series
    Weiss, Christian H.
    Fled, Martin H. J. M.
    Khan, Naushad Mamode
    Sunecher, Yuvraj
    STATS, 2019, 2 (02): : 284 - 320
  • [7] Count Time Series: A Methodological Review
    Davis, Richard A.
    Fokianos, Konstantinos
    Holan, Scott H.
    Joe, Harry
    Livsey, James
    Lund, Robert
    Pipiras, Vladas
    Ravishanker, Nalini
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (535) : 1533 - 1547
  • [8] SUPERPOSITIONED STATIONARY COUNT TIME SERIES
    Jia, Yisu
    Lund, Robert
    Livsey, James
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2021, 35 (03) : 538 - 556
  • [9] Probabilistic reconciliation of count time series
    Corani, Giorgio
    Azzimonti, Dario
    Rubattu, Nicolo
    INTERNATIONAL JOURNAL OF FORECASTING, 2024, 40 (02) : 457 - 469
  • [10] Count Time-Series Analysis
    Manolakis, Dimitris
    Bosowski, Nicholas
    Ingle, Vinay K.
    IEEE SIGNAL PROCESSING MAGAZINE, 2019, 36 (03) : 64 - 81