This article develops the theory and methods for modeling a stationary count time series via Gaussian transformations. The techniques use a latent Gaussian process and a distributional transformation to construct stationary series with very flexible correlation features that can have any prespecified marginal distribution, including the classical Poisson, generalized Poisson, negative binomial, and binomial structures. Gaussian pseudo-likelihood and implied Yule-Walker estimation paradigms, based on the autocovariance function of the count series, are developed via a new Hermite expansion. Particle filtering and sequential Monte Carlo methods are used to conduct likelihood estimation. Connections to state space models are made. Our estimation approaches are evaluated in a simulation study and the methods are used to analyze a count series of weekly retail sales. Supplementary materials for this article are available online.
机构:
Old Dominion Univ, Dept Math & Stat, 4700 Elkhorn Ave, Norfolk, VA 23520 USAOld Dominion Univ, Dept Math & Stat, 4700 Elkhorn Ave, Norfolk, VA 23520 USA
Alqawba, Mohammed
论文数: 引用数:
h-index:
机构:
Diawara, Norou
Chaganty, N. Rao
论文数: 0引用数: 0
h-index: 0
机构:
Old Dominion Univ, Dept Math & Stat, 4700 Elkhorn Ave, Norfolk, VA 23520 USAOld Dominion Univ, Dept Math & Stat, 4700 Elkhorn Ave, Norfolk, VA 23520 USA
机构:
Univ North Florida, Dept Math & Stat, 1 UNF Dr, Jacksonville, FL 32224 USAUniv North Florida, Dept Math & Stat, 1 UNF Dr, Jacksonville, FL 32224 USA
Jia, Yisu
Lund, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Clemson Univ, Dept Math Sci, O-110 Martin Hall,Box 340975, Clemson, SC 29634 USAUniv North Florida, Dept Math & Stat, 1 UNF Dr, Jacksonville, FL 32224 USA
Lund, Robert
Livsey, James
论文数: 0引用数: 0
h-index: 0
机构:
US Census Bur, Ctr Stat Res & Methodol, 4600 Silver Hill Rd, Washington, DC 20233 USAUniv North Florida, Dept Math & Stat, 1 UNF Dr, Jacksonville, FL 32224 USA