Hybrid quantum learning with data reuploading on a small-scale superconducting quantum simulator

被引:2
|
作者
Tolstobrov, Aleksei [1 ,2 ]
Fedorov, Gleb [1 ,2 ,3 ]
Sanduleanu, Shtefan [1 ,2 ,3 ]
Kadyrmetov, Shamil [1 ]
Vasenin, Andrei [1 ,4 ]
Bolgar, Aleksey [1 ,4 ]
Kalacheva, Daria [1 ,3 ,4 ]
Lubsanov, Viktor [1 ]
Dorogov, Aleksandr [1 ]
Zotova, Julia [1 ,3 ,4 ]
Shlykov, Peter [1 ]
Dmitriev, Aleksei [1 ,3 ]
Tikhonov, Konstantin [5 ]
Astafiev, Oleg, V [1 ,4 ]
机构
[1] Moscow Inst Phys & Technol, Lab Artificial Quantum Syst, Dolgoprudnyi 141700, Russia
[2] Russian Quantum Ctr, Moscow 121205, Russia
[3] Natl Univ Sci & Technol MISIS, Lab Superconducting Metamat, Moscow 119049, Russia
[4] Skolkovo Inst Sci & Technol, Ctr Engn Phys, Moscow 121205, Russia
[5] LD Landau Inst Theoret Phys, Chernogolovka 142432, Russia
基金
俄罗斯科学基金会;
关键词
BARREN PLATEAUS; PROCESSOR; POWER;
D O I
10.1103/PhysRevA.109.012411
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Supervised quantum learning is an emergent multidisciplinary domain bridging between variational quantum algorithms and classical machine learning. Here, we study experimentally a hybrid classifier model using quantum hardware simulator (a linear array of four superconducting transmon artificial atoms) trained to solve multilabel classification and image recognition problems. We train a quantum circuit on simple binary and multilabel tasks, achieving classification accuracy around 95%, and a hybrid quantum model with data reuploading with accuracy around 90% when recognizing handwritten decimal digits. Finally, we analyze the inference time in experimental conditions and compare the performance of the studied quantum model with known classical solutions.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Reinforcement Quantum Annealing: A Hybrid Quantum Learning Automata
    Ayanzadeh, Ramin
    Halem, Milton
    Finin, Tim
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [42] Use of small-scale quantum computers in cryptography with many-qubit entangled states
    Bayandin, KV
    Lesovik, GB
    JETP LETTERS, 2005, 81 (07) : 351 - 355
  • [43] Use of small-scale quantum computers in cryptography with many-qubit entangled states
    K. V. Bayandin
    G. B. Lesovik
    Journal of Experimental and Theoretical Physics Letters, 2005, 81 : 351 - 355
  • [44] Hybrid annealing: Coupling a quantum simulator to a classical computer
    Grass, Tobias
    Lewenstein, Maciej
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [45] Using machine learning and data enrichment in the selection of roads for small-scale maps
    Karsznia, Izabela
    Adolf, Albert
    Leyk, Stefan
    Weibel, Robert
    CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE, 2024, 51 (01) : 60 - 78
  • [46] Transfer Learning for Small-scale Data Classification Using CNN Filter Replacement
    Muto, Ryo
    Yata, Noriko
    Manabe, Yoshitsugu
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY (IWAIT) 2021, 2021, 11766
  • [47] An active representation learning method for reaction yield prediction with small-scale data
    Hua, Peng-Xiang
    Huang, Zhen
    Xu, Zhe-Yuan
    Zhao, Qiang
    Ye, Chen-Yang
    Wang, Yi-Feng
    Xu, Yun-He
    Fu, Yao
    Ding, Hu
    COMMUNICATIONS CHEMISTRY, 2025, 8 (01):
  • [48] Enhancing quantum utility: Simulating large-scale quantum spin chains on superconducting quantum computers
    Chowdhury, Talal Ahmed
    Yu, Kwangmin
    Shamim, Mahmud Ashraf
    Kabir, M. L.
    Sufian, Raza Sabbir
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [49] QUANTUM UNSUPERVISED AND SUPERVISED LEARNING ON SUPERCONDUCTING PROCESSORS
    Sarma, Abhijat
    Chatterjee, Rupak
    Gili, Kaitlin
    Yu, Ting
    QUANTUM INFORMATION & COMPUTATION, 2020, 20 (7-8) : 541 - 552
  • [50] Quantum unsupervised and supervised learning on superconducting processors
    Sarma, Abhijat
    Chatterjee, Rupak
    Gili, Kaitlin
    Yu, Ting
    Quantum Information and Computation, 2020, 20 (7-8): : 541 - 552