Hybrid quantum learning with data reuploading on a small-scale superconducting quantum simulator

被引:2
|
作者
Tolstobrov, Aleksei [1 ,2 ]
Fedorov, Gleb [1 ,2 ,3 ]
Sanduleanu, Shtefan [1 ,2 ,3 ]
Kadyrmetov, Shamil [1 ]
Vasenin, Andrei [1 ,4 ]
Bolgar, Aleksey [1 ,4 ]
Kalacheva, Daria [1 ,3 ,4 ]
Lubsanov, Viktor [1 ]
Dorogov, Aleksandr [1 ]
Zotova, Julia [1 ,3 ,4 ]
Shlykov, Peter [1 ]
Dmitriev, Aleksei [1 ,3 ]
Tikhonov, Konstantin [5 ]
Astafiev, Oleg, V [1 ,4 ]
机构
[1] Moscow Inst Phys & Technol, Lab Artificial Quantum Syst, Dolgoprudnyi 141700, Russia
[2] Russian Quantum Ctr, Moscow 121205, Russia
[3] Natl Univ Sci & Technol MISIS, Lab Superconducting Metamat, Moscow 119049, Russia
[4] Skolkovo Inst Sci & Technol, Ctr Engn Phys, Moscow 121205, Russia
[5] LD Landau Inst Theoret Phys, Chernogolovka 142432, Russia
基金
俄罗斯科学基金会;
关键词
BARREN PLATEAUS; PROCESSOR; POWER;
D O I
10.1103/PhysRevA.109.012411
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Supervised quantum learning is an emergent multidisciplinary domain bridging between variational quantum algorithms and classical machine learning. Here, we study experimentally a hybrid classifier model using quantum hardware simulator (a linear array of four superconducting transmon artificial atoms) trained to solve multilabel classification and image recognition problems. We train a quantum circuit on simple binary and multilabel tasks, achieving classification accuracy around 95%, and a hybrid quantum model with data reuploading with accuracy around 90% when recognizing handwritten decimal digits. Finally, we analyze the inference time in experimental conditions and compare the performance of the studied quantum model with known classical solutions.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Practical quantum simulation of small-scale non-Hermitian dynamics
    Liu, Hongfeng
    Yang, Xiaodong
    Tang, Kai
    Che, Liangyu
    Nie, Xinfang
    Xin, Tao
    Li, Jun
    Lu, Dawei
    PHYSICAL REVIEW A, 2023, 107 (06)
  • [22] Quantum generative adversarial learning in a superconducting quantum circuit
    Hu, Ling
    Wu, Shu-Hao
    Cai, Weizhou
    Ma, Yuwei
    Mu, Xianghao
    Xu, Yuan
    Wang, Haiyan
    Song, Yipu
    Deng, Dong-Ling
    Zou, Chang-Ling
    Sun, Luyan
    SCIENCE ADVANCES, 2019, 5 (01)
  • [23] Probing dynamical phase transitions with a superconducting quantum simulator
    Xu, Kai
    Sun, Zheng-Hang
    Liu, Wuxin
    Zhang, Yu-Ran
    Li, Hekang
    Dong, Hang
    Ren, Wenhui
    Zhang, Pengfei
    Nori, Franco
    Zheng, Dongning
    Fan, Heng
    Wang, H.
    SCIENCE ADVANCES, 2020, 6 (25):
  • [24] Superconducting quantum simulator for topological order and the toric code
    Sameti, Mahdi
    Potocnik, Anton
    Browne, Dan E.
    Wallraff, Andreas
    Hartmann, Michael J.
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [25] MAXIMUM POWER OF SMALL-SCALE SUPERCONDUCTING EMITTER
    VENDIK, OG
    KOZYREV, AB
    MOROZIK, VP
    ZHURNAL TEKHNICHESKOI FIZIKI, 1981, 51 (07): : 1550 - 1553
  • [26] IMPROVED CLASSIFICATION OF SMALL-SCALE URBAN WATERSHEDS USING THEMATIC MAPPER SIMULATOR DATA
    OWE, M
    ORMSBY, JP
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1984, 5 (05) : 761 - 770
  • [27] A Hybrid System for Learning Classical Data in Quantum States
    Stein, Samuel A.
    L'Abbate, Ryan
    Mu, Wenrui
    Liu, Yue
    Baheri, Betis
    Mao, Ying
    Qiang, Guan
    Li, Ang
    Fang, Bo
    2021 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE (IPCCC), 2021,
  • [28] QUANTUM FEDERATED LEARNING WITH QUANTUM DATA
    Chehimi, Mahdi
    Saad, Walid
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8617 - 8621
  • [29] Experimental Characterization of Fault-Tolerant Circuits in Small-Scale Quantum Processors
    Cane, Rosie
    Chandra, Daryus
    Ng, Soon Xin
    Hanzo, Lajos
    IEEE ACCESS, 2021, 9 : 162996 - 163011
  • [30] Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems
    Xiang, Ze-Liang
    Ashhab, Sahel
    You, J. Q.
    Nori, Franco
    REVIEWS OF MODERN PHYSICS, 2013, 85 (02) : 623 - 653