Hybrid quantum learning with data reuploading on a small-scale superconducting quantum simulator

被引:2
|
作者
Tolstobrov, Aleksei [1 ,2 ]
Fedorov, Gleb [1 ,2 ,3 ]
Sanduleanu, Shtefan [1 ,2 ,3 ]
Kadyrmetov, Shamil [1 ]
Vasenin, Andrei [1 ,4 ]
Bolgar, Aleksey [1 ,4 ]
Kalacheva, Daria [1 ,3 ,4 ]
Lubsanov, Viktor [1 ]
Dorogov, Aleksandr [1 ]
Zotova, Julia [1 ,3 ,4 ]
Shlykov, Peter [1 ]
Dmitriev, Aleksei [1 ,3 ]
Tikhonov, Konstantin [5 ]
Astafiev, Oleg, V [1 ,4 ]
机构
[1] Moscow Inst Phys & Technol, Lab Artificial Quantum Syst, Dolgoprudnyi 141700, Russia
[2] Russian Quantum Ctr, Moscow 121205, Russia
[3] Natl Univ Sci & Technol MISIS, Lab Superconducting Metamat, Moscow 119049, Russia
[4] Skolkovo Inst Sci & Technol, Ctr Engn Phys, Moscow 121205, Russia
[5] LD Landau Inst Theoret Phys, Chernogolovka 142432, Russia
基金
俄罗斯科学基金会;
关键词
BARREN PLATEAUS; PROCESSOR; POWER;
D O I
10.1103/PhysRevA.109.012411
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Supervised quantum learning is an emergent multidisciplinary domain bridging between variational quantum algorithms and classical machine learning. Here, we study experimentally a hybrid classifier model using quantum hardware simulator (a linear array of four superconducting transmon artificial atoms) trained to solve multilabel classification and image recognition problems. We train a quantum circuit on simple binary and multilabel tasks, achieving classification accuracy around 95%, and a hybrid quantum model with data reuploading with accuracy around 90% when recognizing handwritten decimal digits. Finally, we analyze the inference time in experimental conditions and compare the performance of the studied quantum model with known classical solutions.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Demonstration of a Bosonic Quantum Classifier with Data Reuploading
    Ono, Takafumi
    Roga, Wojciech
    Wakui, Kentaro
    Fujiwara, Mikio
    Miki, Shigehito
    Terai, Hirotaka
    Takeoka, Masahiro
    PHYSICAL REVIEW LETTERS, 2023, 131 (01)
  • [2] Quantum Hamiltonian embedding of images for data reuploading classifiers
    Wang, Peiyong
    Myers, Casey R.
    Hollenberg, Lloyd C. L.
    Parampalli, Udaya
    QUANTUM MACHINE INTELLIGENCE, 2025, 7 (01)
  • [3] A quantum watermarking scheme using simple and small-scale quantum circuits
    Miyake, S.
    Nakamae, K.
    QUANTUM INFORMATION PROCESSING, 2016, 15 (05) : 1849 - 1864
  • [4] A quantum watermarking scheme using simple and small-scale quantum circuits
    S. Miyake
    K. Nakamae
    Quantum Information Processing, 2016, 15 : 1849 - 1864
  • [5] Quantum dynamics of the small-polaron formation in a superconducting analog simulator
    Stojanovic, Vladimir M.
    Salom, Igor
    PHYSICAL REVIEW B, 2019, 99 (13)
  • [6] Small-scale universality of particle dynamics in quantum turbulence
    La Mantia, M.
    Svancara, P.
    Duda, D.
    Skrbek, L.
    PHYSICAL REVIEW B, 2016, 94 (18)
  • [7] APPLICATIONS OF SMALL-SCALE QUANTUM ERGODICITY IN NODAL SETS
    Hezari, Hamid
    ANALYSIS & PDE, 2018, 11 (04): : 855 - 871
  • [8] Deep Learning Technology for Small-scale Data
    Ishii M.
    Sato A.
    1600, Inst. of Image Information and Television Engineers (74): : 26 - 29
  • [9] Universal Photonic Neural Networks with Quantum-Free Data Reuploading
    Kojima, Keisuke
    Koike-Akino, Toshiaki
    PHOTONICS FOR QUANTUM 2024, 2024, 13106
  • [10] An improved quantum watermarking scheme using small-scale quantum circuits and color scrambling
    Li, Panchi
    Zhao, Ya
    Xiao, Hong
    Cao, Maojun
    QUANTUM INFORMATION PROCESSING, 2017, 16 (05)