Automated analysis of low-field brain MRI in cerebral malaria

被引:4
|
作者
Tu, Danni [1 ]
Goyal, Manu S. [2 ]
Dworkin, Jordan D. [3 ]
Kampondeni, Samuel [4 ]
Vidal, Lorenna [5 ]
Biondo-Savin, Eric [6 ]
Juvvadi, Sandeep [7 ]
Raghavan, Prashant [8 ]
Nicholas, Jennifer [9 ]
Chetcuti, Karen [10 ]
Clark, Kelly [1 ]
Robert-Fitzgerald, Timothy [1 ]
Satterthwaite, Theodore D. [11 ]
Yushkevich, Paul [12 ]
Davatzikos, Christos [12 ]
Erus, Guray [13 ]
Tustison, Nicholas J. [14 ]
Postels, Douglas G. [15 ]
Taylor, Terrie E. [4 ,16 ]
Small, Dylan S. [17 ]
Shinohara, Russell T. [1 ,13 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Penn Stat Imaging & Visualizat Endeavor PennSIVE, 217 Blockley Hall 423 Guardian Dr, Philadelphia, PA 19104 USA
[2] Washington Univ, Mallinckrodt Inst Radiol, St Louis, MO USA
[3] Columbia Univ, Dept Psychiat, Irving Med Ctr, New York, NY USA
[4] Kamuzu Univ Hlth Sci, Blantyre Malaria Project, Blantyre, Southern Region, Malawi
[5] Childrens Hosp Philadelphia, Dept Radiol, Philadelphia, PA 19104 USA
[6] Michigan State Univ, Dept Radiol, E Lansing, MI 48824 USA
[7] Tenet Diagnost, Hyderabad, India
[8] Univ Maryland, Sch Med, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21201 USA
[9] Case Western Reserve Univ, Univ Hosp Cleveland, Med Ctr, Dept Radiol, Cleveland, OH 44106 USA
[10] Kamuzu Univ Hlth Sci, Dept Paediat & Child Hlth, Blantyre, Southern Region, Malawi
[11] Univ Penn, Dept Psychiat, Philadelphia, PA 19104 USA
[12] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[13] Univ Penn, Dept Radiol, Ctr Biomed Image Comp & Anal CBICA, Philadelphia, PA 19104 USA
[14] Univ Virginia, Dept Radiol & Med Imaging, Charlottesville, VA USA
[15] George Washington Univ, Childrens Natl Med Ctr, Div Neurol, Washington, DC USA
[16] Michigan State Univ, Coll Osteopath Med, E Lansing, MI 48824 USA
[17] Univ Penn, Dept Stat, 417 Acad Res Bldg 265 South 37th St, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
brain segmentation; data integration; Markov random field; MRI; IMAGE SEGMENTATION; MODEL; STRATEGIES; CHILDREN; COHORT;
D O I
10.1111/biom.13708
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A central challenge of medical imaging studies is to extract biomarkers that characterize disease pathology or outcomes. Modern automated approaches have found tremendous success in high-resolution, high-quality magnetic resonance images. These methods, however, may not translate to low-resolution images acquired on magnetic resonance imaging (MRI) scanners with lower magnetic field strength. In low-resource settings where low-field scanners are more common and there is a shortage of radiologists to manually interpret MRI scans, it is critical to develop automated methods that can augment or replace manual interpretation, while accommodating reduced image quality. We present a fully automated framework for translating radiological diagnostic criteria into image-based biomarkers, inspired by a project in which children with cerebral malaria (CM) were imaged using low-field 0.35 Tesla MRI. We integrate multiatlas label fusion, which leverages high-resolution images from another sample as prior spatial information, with parametric Gaussian hidden Markov models based on image intensities, to create a robust method for determining ventricular cerebrospinal fluid volume. We also propose normalized image intensity and texture measurements to determine the loss of gray-to-white matter tissue differentiation and sulcal effacement. These integrated biomarkers have excellent classification performance for determining severe brain swelling due to CM.
引用
收藏
页码:2417 / 2429
页数:13
相关论文
共 50 条
  • [41] The deep route to low-field MRI with high potential
    Patricia M. Johnson
    Yvonne W. Lui
    Nature, 2023, 623 : 700 - 701
  • [42] MRI in rheumatoid arthritis of the hands: Comparison of high-field and low-field MRI
    Taouli, BA
    Zaim, S
    Lynch, JA
    Peterfy, CG
    Stork, A
    Fan, B
    RADIOLOGY, 2001, 221 : 523 - 523
  • [43] Low-field MRI: A report on the 2022 ISMRM workshop
    Campbell-Washburn, Adrienne E.
    Keenan, Kathryn E.
    Hu, Peng
    Mugler, John P., III
    Nayak, Krishna S.
    Webb, Andrew G.
    Obungoloch, Johnes
    Sheth, Kevin N.
    Hennig, Juergen
    Rosen, Matthew S.
    Salameh, Najat
    Sodickson, Daniel K.
    Stein, Joel M.
    Marques, Jose P.
    Simonetti, Orlando P.
    MAGNETIC RESONANCE IN MEDICINE, 2023, 90 (04) : 1682 - 1694
  • [44] Deep learning for fast low-field MRI acquisitions
    Reina Ayde
    Tobias Senft
    Najat Salameh
    Mathieu Sarracanie
    Scientific Reports, 12
  • [45] MRI of the equine digit with a dedicated low-field magnet
    Choquet, P
    Sick, H
    Constantinesco, A
    VETERINARY RECORD, 2000, 146 (21) : 616 - 617
  • [46] Nexus: A versatile console for advanced low-field MRI
    Schote, David
    Silemek, Berk
    O'Reilly, Thomas
    Seifert, Frank
    Assmy, Jan-Lukas
    Kolbitsch, Christoph
    Webb, Andrew G.
    Winter, Lukas
    MAGNETIC RESONANCE IN MEDICINE, 2025, 93 (05) : 2224 - 2238
  • [47] Deep learning for fast low-field MRI acquisitions
    Ayde, Reina
    Senft, Tobias
    Salameh, Najat
    Sarracanie, Mathieu
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [48] Repeatability of image quality in very low-field MRI
    Poojar, Pavan
    Oiye, Ivan Etoku
    Aggarwal, Kunal
    Jimeno, Marina Manso
    Vaughan, John Thomas
    Geethanath, Sairam
    NMR IN BIOMEDICINE, 2024, 37 (10)
  • [49] Low-Field Designs for Interior MRI and CT Coupling
    Gjesteby, Lars
    Getzin, Matthew
    Wang, Ge
    2015 41ST ANNUAL NORTHEAST BIOMEDICAL ENGINEERING CONFERENCE (NEBEC), 2015,
  • [50] Forensic age assessment by means of low-field MRI
    Ottow, C.
    Schmidt, S.
    Schulz, R.
    Sottmann, L.
    Heindel, W.
    Kraehling, T.
    Pfeiffer, H.
    Vieth, V.
    Schmeling, A.
    RECHTSMEDIZIN, 2023, 33 (02) : 96 - 104